OCTARISK Documentation

version 0.6.0

OCTA

Stefan Schloegl (schinzilord@octarisk.com)

mailto:schinzilord@octarisk.com

This is the documentation for the market risk measurement project OCTARISK version 0.6.0.
Copyright (©) 2015,2016,2017,2018,2019,2020 Stefan Schloegl
Permission is granted to copy, distribute and/or modify this document under

the terms of the GNU Free Documentation License, Version 2 or any later
version published by the Free Software Foundation.

Table of Contents

OCTARISK Documentation 1
1 Introduction...................... 2
1.1 Why quantifying market risk?ol 2
1.2 Feabures. ..o 2
1.3 PrerequiSitesoeeiiiiiimni e e 3
2 Userguide....... 4
2.1 Risk management in practicec.coiiiiiiiiiiii., 4
2.1.1 What is the investment objective?............... 4
2.1.2 Which purpose has risk management?......................)
2.1.3 Which risks to cover? 5
2.1.4 Which risks not to cover? i i 5)
2.1.5 Where are the blind spots?............coiiiiiiiii i,)
2.1.6 How to calibrate the model? 6
2.1.7 Further thoughts......... i 6
2.1.8 Roadmap and Exampleo i 6
2.2 Introducing market risk......... ... 8
2.3 Market risk measureso i 9
2.3.1 Value-at-Risk....... .o 9
2.3.2 Expected shortfall (ES) ... 9
2.4 Scenario generation.oiiiiiiii 9
2.4.1 Random number generation................ o 9
2.4.2 Stochasticmodels......... 10
2.4.2.1 Random walk and the Wiener process................ 10
2.4.2.2 Ornstein-Uhlenbeck process.......................... 10
2.4.2.3 Square-root diffusion process................ ... 10

2.4.3 Financial models i 11
2.4.3.1 Geometric Brownian motion 11
2.4.3.2 Brownian motion iiiiiiii... 11
2.4.3.3 Vasicek model i 11
2.4.3.4 Cox-Ingersoll-Ross and Heston model 11

2.4.4 Parameter estimation.............. i 11
2.4.5 Monte-Carlo Simulation, 12
2.4.6 Stress testingt 12
2.5 Instrument valuation i 13
2.5.1 Sensitivity approach i 13
2.5.1.1 Linear dependency on risk factor shocks.............. 13
2.5.1.2 Approximation with sensitivity approach............. 13

2.5.2 Full valuation approach............ 14
2.5.2.1 Option pricing..........coooiiiiiiiiiii .. 14

2.5.2.2 Swaption pricing. ...t 15

2.5.2.3 Forward and Future pricing 15
2.5.2.4 Cash flow instrument pricing......................... 15
2.5.2.5 Bond instrument pricing oL 15
2.5.2.6 Cap and floor instrument pricing..................... 16

2.5.3 Synthetic instruments.o i 16
2.5.4 Stochastic instruments...............c i 16
2.5.5 Retail instruments................. 16
2.6 Aggregation 16
2.7 Reportingcooiiiiii e 16
2.7.1 Risk Report ... 17
2.7.2 Solvency II regulatory reporting 24
2.8 Graphical user interface 24
Developer guide 25
3.1 TImplementation conceptccoiiiiiiiiiiiiiiiiii ., 25
3.1.1 Process OVEIVIEWttt 25
3.1.2 Class diagramoviiie e 26
3.2 Implementation workflow i, 28
3.2, 1 OVEIVIEW . oottt ettt e e e e 28
3.3 Input files. ... oo 29
3.3.1 Risk factors ... 29
3.3.2 POSItIONS ... 30
3.3.3 Instrumentso 31
3.3.4 Stress teStS ..t v i 32
3.3.5 Volatility surface 32
3.3.6 Marketdata objects file il 33
3.3.7 Correlation matrix........ ... 36
3.4 Output files 37
Octave octarisk Classes........................ 38
4.1 Instrument.helpo 38
4.2 Matrix.help ... 39
4.3 Curve.help ... 41
4.4 Forward.help ... 45
4.5 Option.help . ..o 48
4.6 Cash.help ... 54
4.7 Debt.help ... 55
4.8 Sensitivity.help 57
4.9 Riskfactor.help ... 62
4.10 Index.help.o 65
4.11 Synthetic.help...... ... 67
4.12 Surfacehelp.o 70
4.13 Swaption.help ... 72
4.14 Stochastic.help...... ..o 76
4.15 CapFloor.help.......ooiiii e 78
4.16 Bond.help..... ..o 82
4.17 Position.help 86

4.18 Retailhelp 89

ii

5 Octave Functions and Scripts................. 92
5.1 adapt_matlab 92
5.2 addtodatefinancial.......... 92
0.3 aggregate_pOSIitiONS.couuiiiiiiiiiiii i 92
D4 ANy 2Sbr. . 93
5.5 betalnc_vec. 93
5.6 Detalnv_vVeC.o 94
5.7 calcConvexityAdjustment........... i 94
5.8 calc HHI 94
5.9 calibrate_evt_gpd........ .. 94
5.10 calibrate_generic 95
5.11 compile_oct_files.... 95
D.12 convert_CUrve_TatesS.c.uuueeeieetiiiiiiiiiiiiiieeeennn. 95
5.13 correct_correlation-matrix......... oo 96
5.14 discount _factor.......... ..o 97
5.15 doc_instrument........ ... 97
5.16 doc_riskfactor......... .o 97
5.17 epanechnikov_weight 98
5.18 estimate_parameter............c.oooiiiiiiiiiiiii 99
5.19 fMINCON . ot 99
0.20 aMMAINC. ...ttt 100
5.21 gamMMAINCINV.ttt 100
5.22 generate_willowtree....... o i 101
5.23 getCapFloorRate....... ..o 101
5.24 getFlooredSpotByFlooringForwardCurve..................... 102
5.25 get FX rate. ... oo 103
5.26 et _basis.t 103
5.27 get_basket_volatility......... ... i i 104
5.28 get_bond_tf_rates 104
5.29 get_cms_rate_hagan i 105
5.30 get_cms_rate_hull 106
5.31 get_credit_ratingo 106
5.32 get_dependencies.ot 106
5.33 get_documentation........... ... 106
5.34 get_documentation_classes.............. ... L. 107
0.35 get_esg rating...... ... 107
5.36 get_forward_rate 107
D.37 et gDPA VAT ... 108
5.38 get_informelass. i 108
5.39 get_informscore 108
5.40 get_marginal_distr_pearson...............oiiiiiiiiiiiiiiian. 108
5.41 get_quantile_estimator...........o i 109
5.42 get_readinessclass ... i 110
5.43 get_readinesSSCoTettt 110
D44 U _SITI . .v ettt 110
5.45 get_srri_level ... 110
5.46 get_srri_simple 110
5.47 get_sub_object ... 110

iii

5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
9.58
5.59
5.60
5.61
5.62
5.63
5.64
5.65
5.66
5.67
5.68
5.69
5.70
5.71
5.72
5.73
5.74
5.75
5.76
5.77
5.78
5.79
5.80
5.81
5.82
5.83
5.84
5.85
5.86
5.87
5.88
5.89
5.90
5.91
5.92
5.93
5.94
5.95

get_sub_struct........ ... 110
281 0 111
harrell_davis_weight 111
ind2sub_tril 111
instrument_valuation.......... i 112
integrationtests.o 112
interpolate_curve............ 112
load_correlation_ matrix............ooo i i 113
load_instruments......... ... 113
load_matrix_objectst 114
load_mktdata_objects o 114
load_parameter. 114
load _positionsov 114
load_riskfactor_mapping.........cooveiiireeeenniiiiiia... 114
load_riskfactor_scenarios.............. ... o it 115
load _riskfactor_stressest 115
load_riskfactors e 115
load _stresstests. ..ot 115
load_volacubes . ..o 115
load_yieldcurves.o 116
OCtaATISK . oo 116
octarisk_gui..... ..o i 116
option_asian_levy ... i 116
option_asian_vorst90 i 117
OPtION _DAITIeT . . .\t 117
option_binary ... 118
option_bjsten 119
option_bond_hw....... 119
option_bS ..o 120
option_lookback......... 120
option_willowtree....... i 121
perform_rf_stat_tests......... 122
plot_AA piecharts. ...t 122
plot_HHI piecharts...............c i i 122
plot_hist_var...... ... 122
plot_hist_var_simple....... i i 122
plot_sensitivitiescco i i 122
plot_solvencyratio.........coouiiiiieiiiii . 122
pricing_forward 122
PIiCING NPV . oottt ettt e e e e 123
print_class2dot ... 124
profiler_analysis......... ... i 124
replacement _SCripto e 124
return_checked_input.................. . 124
rollout_retail_cashflows............ 125
rollout_structured_cashflows.............., 125
SAVE_ODJECtS . . oot 125

scenario_generation . MC i 125

iv

5.96

5.97

5.98

5.99

5.100
5.101
5.102
5.103
5.104
5.105
5.106
5.107
5.108
5.109
5.110
5.111
5.112
5.113
5.114
5.115
5.116
5.117
5.118
5.119
5.120
5.121

SOlVeNCy2_reportingoun e 126

SETUCE20Dj . oo 126
swaption_bachelier 126
swaption_black76........ ... 127
swaption_underlyings............ .. . i i 127
St 10 o et 128
test_oct_files 128
test_pos_aggregation ... i i 128
testriskfree.o 128
timefactor. 128
TNt eStS . oo 128
UNVECH . oo 129
update_mktdata_objects......... ... i 129
betainc_lentz_vec......... ..o 129
CalC_SODOL_CPP + oo 129
calc_vola_basket _cppo 129
calculate npV_Cpp ... 130
gammainc_lentz_vec....... i 130
interpolate_cubestruct.......... .. i 130
interpolate_curve_vectorized................. .l 131
interpolate_curve_vectorized_-mc............... 131
interpolate_curvestruct ... i i 131
interpolate_surfacestruct il 132
optimize_basket_forwardprice............ol 132
pricing_callable_bond_cpp ..o 133
PriCiNg_OPtION_CPP « ¢ vt 133

OCTARISK Documentation

This manual is for the market risk measurement project OCTARISK (version 0.6.0).

1 Introduction

1.1 Why quantifying market risk?

This ongoing project is made for all investors who want to dig deeper into their portfolio
than just looking at the yearly profit or loss. Although most financial reports of more
sophisticated brokers contain risk measures like standard deviations, the volatility alone
cannot cover the risk inherent in non-linear financial products like options. Moreover,
potential investors care about their portfolio values under certain market conditions, e.g.
they want to compare their perceived personal stress levels during the financial crisis but
with the financial instruments in their portfolio losses during stress scenarios.

If questions like
e What happens to the portfolio value, if the ECB increases the interest rate by 100bp?
e What is the least amount of money, a given portfolio will loose in one out of 100 events
during the next year?

e How would a given portfolio perform, if a crash comparable to Black Friday 1987 takes
place?

are of potential interest for you, then the OCTARISK market risk project might be satis-
fying your needs for a professional risk modelling framework.

Since most investors do not give excessive credits to debtors or bear operational or
liquidity risks, the OCTARISK project focuses on market risk only - all remaining types of
risk which are relevant for your investment portfolio: equity risk, interest rate risk, volatility
risk, commodity risk, ...

For the assessment of these market risk types, a sophisticated full valuation approach
with Monte-Carlo based value-at-risk and expected shortfall calculation is performed. The
underlying principles are state-of-the-art in financial institutions and are used in internal
models to fulfill the requirements set by regulators (for Basel III and Solvency 2). The
important concepts are adopted, the unnecessary overhead was skipped - resulting in a fast,
lightweight yet flexible approach for quantifying market risk.

1.2 Features

The OCTARISK quantifying market risk projects features
e a full valuation approach for financial instruments
e Monte-Carlo method for scenario generation of underlying risk factors
e simple input interface via static and dynamic files

e a processable report incl. graphical representation of portfolio profits and losses as well
as an overview over the riskiest instruments and positions (see See Section 3.4 [Output
files], page 37, for examples)

e an eagily customizable framework based on full implementation on Octave with compact
source code

Chapter 1: Introduction 3

1.3 Prerequisites

The only requirement is GNU Octave (https://www.gnu.org/software/octave/) (tested
for versions > 4.0) with installed financial package and hardware with minimum of 4Gb
of memory. Calculation time decreases significantly while using optimized linear algebra
packages of OpenBLAS (http://www.openblas.net/openblas) and LAPACK (http://
www.netlib.org/lapack/) (or comparable). For automatic processing of the input data
(e.g. to get actual market data from Quandl or Yahoo finance), to make the parameter
estimation as well as process the report files, some programming language like Perl, Python
and a running LaTeX environment are recommended, but not required.

Nevertheless, a basic understanding of a high level programming language like Octave
is required to adjust the source code and to customize the calculation. Furthermore, a
thorough understanding of financial markets, instruments and valuation will be needed in
order to select appropriate models and to interpret results. The implemented models and
the underlying concepts are explained in detail for example in following literature:

Risk Management and Financial Institutions, John C. Hull, 2015
Paul Wilmott on Quantitative Finance, 2nd Edition, Paul Wilmott, 2006
Options, Futures and other Derivatives, 7th Edition, John C. Hull, 2008

The next chapter contains the background and details needed for running the market
risk valuation and aggregation software and understanding the risk measures.

https://www.gnu.org/software/octave/
http://www.openblas.net/openblas
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/

2 User guide

This chapter gives a general introduction to market risk and how the market risk is cap-
tured by OCTARISK. Thereby the following convention is made: market movement means
the movement around the mean value or, in other words, the possible deviation from the
expected value as time passes. Stronger movement around the expected value means more
risk and results in a higher standard deviation, the most important statistic parameter for
capturing market risk.

2.1 Risk management in practice

Risk management is both art and science. The science part can be seen as quantitative
risk measurement, selection of stochastic models and pricing functions, as well as setting up
scenario generation and aggregation. Risk measurement follows a straigthforward approach
and is only constraint by operational questions, e.g. requirement and test management,
computational limitations, reporting timelines and maintenance effort. Calculation au-
tomation and calculation performance are two of the key design principles of OCTARISK.
The dependencies between the modules and configuration capabilities are covered in See
Chapter 3 [Developer guide], page 25, description of all classes and functions.

The art part covers more the qualitative aspects of risk management, e.g. how can risk
assessment contribute to reaching investment goals, which types of risk should be selected,
which risk types can be neglected (known unknowns), where are blind spots (unknown
unknowns) and what is the remaining model risk. Risk management can be both highly
specific to the investment business (e.g. internal models) as well as more or less standard-
ized (e.g. Solvency II Standard Model) to allow for easy regulatory comparison between
companies. In the following some ideas on individual risk management are given and a road
map for running an appropriate risk model is outlined.

2.1.1 What is the investment objective?

Before one should think about risk management, a clear investment objective or goal has
to be specified. These goals could be (early) retirement, buying a house in some years,
repaying debt or even just accumulating as much wealth as possible. Even unspecific goals
are better than no goals at all. Once the goal and responsibilities are set, the following
aspects should be covered in an written investment policy statement (IPS):

e Return: The minimum required return for reaching the investment goal under given
time and liquidity constraints should be assessed in the very beginning, since it is the
basis for the following investment process.

e Risk: Both ability and willingness to take risk has to be taken into account. The more
conservative of these two limits the overall risk appetite, which itself limits the potential
portfolio return. If the risk appetite is not compatible to reaching the investment
objective under given time constraints, some parameter have to be relaxed.

e Time: The investment horizon is one of the main constraints for reaching the over-
all investment goal and directly affects possible strategic and tactical asset allocation
possibilities.

e Tax constraints: Individual tax constraints should be taken into account, although tax
considerations should never dictate the asset allocation.

Chapter 2: User guide 5

e Liquidity constraints: Personal liquidity preferences (e.g. cash inflow or outflow are
known or unknown points in time) will directly influence the cash portion of the asset
allocation.

e Legal constraints: Further legal constraints should be checked and taken into account
after consulting legal experts.

e Unique contraints: Further individual constraints (e.g. donating money) should be
assessed in any case.

These points are valid both for individual persons as well as for institutions or trusts.
Only after thourough specification of an IPS it makes sense to think about risk management.

2.1.2 Which purpose has risk management?

In the light of the IPS, risk management is a steering tool for reaching the investment goals.
Ideally, risk management is part of the continuous feedback loop between risk assessment,
interpretation and analysis and adjusting the asset allocation or adjusting the investment
goal. Possible purposes could be risk assessment of speculative investments, e.g. equity
option short selling. Here risk management serves as input for limit setting and will directly
trigger investment actions (e.g. derisking or allowing for further short selling). Another
purpose is asset-liability management (ALM), where the asset allocation should closely
match the risk profile of the liabilities to reach immunization (e.g. against inflation and
interest rate risk for a retirement portfolio). The most basic purpose could be yearly risk
assessment of aggregated risk figures of the asset portfolio (e.g. VaR or expected shortfall)
and comparing to the risk appetite set in the IPS. Depending on the outcome, adjustments
in asset allocation could be triggered. If no liability positions are involved, the time period
between risk assessment could be significantly lowered towards once a year.

2.1.3 Which risks to cover?

Once the purpose of risk management was clarified, all possible risk types should be evalu-
ated and the most specific for the portfolio should be selected. For a pure long only equity
portfolio based on index funds there is no need to cover interest rate or inflation risk, while
concentration risk (counterparty risk, issues risk) could be worth analyzing. For an ALM
portfolio interest rate and inflation risk will be the most prominent risk types. Assessing
more risk types leads to increased maintenance effort (e.g. calibration) and complexity to
analyse risk contributions.

2.1.4 Which risks not to cover?

The number is risk types covered is both dependent on the underlying asset and liability
risk profile and only limited by available maintenance effort. If risks diversify away or have
only minimal impact, they could be left out.

2.1.5 Where are the blind spots?

New risks could emerge at any point in time (e.g. political, climate or country specific
risks). Maybe it is worth analysing global risk and wealth reports (e.g. from McKinsey or
World Economic Forum), which most often include assessment of severity and probability
of different risks.

Chapter 2: User guide 6

2.1.6 How to calibrate the model?

Full internal model calibration based on historic time series or personal expert judgement
vs. taking expert judgement (e.g. standard deviation and correlation) from Solvency II
Standard Formula. Open points to considers are availablility and quality of historic time
series of risk factors and quality and update frequency of expert judgement. Even com-
mercial time series are limited in quality for more exotic risk factors and require special
treatment..

2.1.7 Further thoughts

Risk management is requiring a holistic view or the whole personal situation beyond invest-
ing in the stock market. One should think about the worst possible scenario which would
lead to undesired outcome (reverse stress testing), e.g. liquidty needs rise dramatically
(relative persons require help during crisis, one is stuck in foreigh country during Covid-19
crisis and cannot fly back), stock, commodity and bitcoin markets fall dramatically in weeks
(contagion effect - everything devaluates), and internet banking is not reachable due to lock
downs and power outages. Do you have enough money, gold and food to live appropriately?
Assessing these kind of scenarios does not require to take precautionary measures - but
thinking about it can help to comfortably an dactively decide to do nothing against it.
Proper presentation of results can be helpful to educate clients or family members and pro-
vide arguments for taking / not taking certain actions and increases condfidence. OCTARISK
assists in this part with providing high quality graphics.

One should specify certain points in time when to review the approach (e.g. on a yearly
basis after consulting the newest global risk report).

2.1.8 Roadmap and Example

A full working example of a long only equity, real estate, gold and bond portfolio incl.
savings and pension plans can be found under WORKING_FOLDER. The calibration was
performed with shocks and correlations according to Solvency II Standard Formula. The
reporting output contains LaTeX tables with key figures and graphics highlighting the risk
profile of the portfolio.

The following steps could be performed to determine a proper risk model and to peri-
odically reassess the assumptions:

Step for each Long Only Asset-Liability Speculative Stock Op-
Portfolio Investment Retirement tion Trading

Risk types to Depending on as- EQ, RE, IR, Option valuation
cover sets, e.g. Equiy, FX Inflation requires EQ and EQ Vol

Risk figures to
assess

and Real Estate
Stress tests could be
enough, VaR mea-
sures could further
assist

VaR / ES measures
are recommended
to capture complex
IR and Inflation
dependencies

VaR / ES and stress tests
incl. qualitative consid-
erations about liquidity,
concentration and coun-
terparty risk would be
required

Chapter 2: User guide

Calibration
Inverse stress
testing: specify

an upper barrier
of loss where you
would freak out
and think about
possible scenarios

Other risks

If only stress test-
ing (e.g. EQ -
50%) is required,
a spread sheet cal-
culation would be
enough. No calibra-
tion requirements.

Which stock mar-
ket shock would lead
to this really hurtful
loss?

Concentration risk
of the portfolio (all
money at one inter-
net bank - fraud /
ransom / IT bugs)?

Risk factor shocks
calibration (both
standard deviation
and correlation)
could be taken
from Solvency I
Standard Formula
(e.g. even taking
symmetric equity
adjustment into
account), in
addition inflation
risk shall be
calibrated by
historic inflation
expectation curves.
Correlations set by
expert judgement.

Which inflation ex-
pectation, political
decisions of quanti-
tative easing would
lead to this loss?

Political risks
(tax changes,
inflation target
changes), Country

and political risks,
local risks of e.g.

own real estate
required during
retirement, health

and longevity risks,
government pension
related risks

Full internal model cal-
ibration is required, to
select risk factors for
equity and equity vol.
A full through-the-cycle
calibration of shock sizes
and correlation should
be performed on historic
time series (e.g. starting
before the financial cri-
sis and covering Covid-
19 scenario). Moreover
severe historic stresses
should be evaluated (e.g.
Flash Crashs, Black Fri-
day, 9/11 etc.)

Increasing margins, lig-
uidity drain for personal
reasongs, stock market
loss and equity volatil-
ity spike: which combi-
nation could lead to this
loss?

Counterparty risk (stock
exchange or issuer of
warrants), margin calls,
issues risk of broker, and
model risk (e.g. pric-
ing models of options ad-
equate to capture real
world risk profile?)

Chapter 2: User guide 8

Further risk Dependencies Dividend / coupon Qualitative assessment

indicators of counterparty payments of portfo- of calibration result
(Swap party), lio (e.g. to cover and historic time series
issuer (of ETF), monthly expenses) appropriateness (e.g.
country (where hourly trading vs. daily
custodian bank is) time series)

etc. to determine
concentration risks,
ESG score

2.2 Introducing market risk

Typically, market risk can be divided into several sub types. Most of the splitting is obvious,
but some of the more exotic risk types remain very broad. The ideal breakdown depends
heavily on the specific portfolio whose market risk shall be quantified. A basic approach
fitting most portfolios of private investors, not too broad, not too granular, is chosen in
OCTARISK. The following types of risk are defined:

FX: Forex risk captures the market movements of exchange rate values. These move-
ments relative to the reporting currency (in our case EUR) affect financial assets in
foreign currencies only.

EQ: Equity risk is related to the movement of equity markets. It will be typically
broken down into sub-categories like countries, regions or other types of aggregation
(e.g. developed market, emerging market, frontier markets).

COM: Commodity risk. This is a rather broad type of risk, often correlated to other
risk types (e.g. equity). Commodity risk tries to capture the movement of spot and
future / forward commodity prices, as well as commodity linked equities.

IR: Interest rate risk is related to the movement of interest rate values. This is the
most important type of risk for cash flow bearing instruments.

SPREAD: Spread risk is related to the movement of spread rates. This is the second
most important type of risk for cash flow bearing instruments.

INFLATION: Inflation risk is related to the not anticipated changes in inflation rates,
e.g. changes in the inflation expectation curve. This risk type affects inflation linked
instruments only.

RE: Real estate risk, where typically it will be distinguished between movements of
market values of REITs (Real Estate Investment Trusts) and housing prices. This risk
type can also be broken down into sub-categories like different countries, regions or
other categories (e.g. developed markets, emerging markets).

VOLA: Implied volatility risk, e.g. the anticipated future movement of implied volatil-
ity of equity instruments or swaps.

ALT: Alternative market risk, used as a container for every other type of risk not
already captured (e.g. Bitcoins, infrastructure)

The OCTARISK projects focuses on these risk types. For each risk type, appropriate risk

factors can be chosen. One risk factor is a typical representative of a particular risk type.
Most often, several risk factors are needed to describe the granular behavior of a market
risk type, e.g. it is necessary to describe the specific characteristics of countries, regions or

Chapter 2: User guide 9

currencies. For example, two risk factors can be used to describe the international equity
market movements: Developed markets and emerging market. If desired, developed market
can be further split into North America, Europe and Asia to describe risk diversification
effects between these broad regions. After the selection of risk factors, stochastic models
are chosen, calibrated and subsequently used for scenario generation.

2.3 Market risk measures

2.3.1 Value-at-Risk

Value-at-risk (VAR) is defined as the monetary loss which the portfolio won’t exceed for
a specific probability on a certain time horizon. As an example, a 250 trading day (one
calender year) VAR of 1000 EUR at the 99% confidence interval means there is a probability
of 99% that the portfolio loss within one year (250 trading days) is equal to or less than
1000 EUR. It is important to note that no forecast is made for the possible loss which can
occur in 1% of the remaining cases. Furthermore, within a proper calibrated risk setup one
must expect a loss greater than the VAR amount in 1% of all cases, that means a loss of
more than 1000 EUR will occur in two to three trading days per year. Otherwise, if there
are no trading days observed where the loss is greater than predicted by VAR, the risk is
overstated, leaving room for better usage of risk capital.

2.3.2 Expected shortfall (ES)

Expected shortfall is an additional risk measure which is defined as the arithmetic average
(mean) loss in the remaining tail of the sorted profit and loss distribution of all simulated MC
scenarios, which are not covered by the 99% VAR. The ES should always be seen in context
of the VAR and is a more coherent risk measure, which can make stronger predictions about
diversification benefits of portfolios.

2.4 Scenario generation

A scenario is a specific set of shocks to risk factors. Typically, the directions of the shocks
are correlated, and the value of the shock is dependent on the stochastic properties of the
risk factors (e.g. volatility or mean reversion parameters). Although these properties can
be also chosen customary, for evaluating risk measures like value-at-risk these parameters
are typically extracted from past, real market movements.

2.4.1 Random number generation

During MC scenario generation, uniform distributed random numbers are used to generate
either normal distributed or t-distributed numbers for risk factor shocks. Octave’s built
in pseudo-random number generator (Mersenne-Twister) is used for default. It is possible
to specify a custom and / or stable seed in order to always get the same results (useful
in regression testing). Moreover, OCTARISK allows to use Sobol quasi-random numbers
for scenario generation. A manual seed and custom directoin numbers can be specified.
Statistical tests (e.g. Jarque-Berra tests and distribution moment calculations) may be
performed on the qualities of drawn random numbers to match the specified statistical
properties.

Chapter 2: User guide 10

2.4.2 Stochastic models

In order to describe movements of risk factors in time, a connection has to be made between
statistical behavior of real time series and stochastic processes for modeling synthetic time
series. OCTARISK concentrates on three stochastic processes: Wiener, Ornstein-Uhlenbeck
and root-diffusion processes.

2.4.2.1 Random walk and the Wiener process

For the Wiener process, two different possible definitions exist. In the first case, both
the drift and the normally-distributed random number W; (the so called Wiener process)
are proportional to the variable at the former time step, resulting in the process S; which
satisfies the following stochastic differential equation:

dS; = mu x S;_q x dt + sigma * Sy x dW,
The following analytic solution to this stochastic differential equation is derived:

Sy = Sy x exp((mu — sigma®/2) x t + sigma * W)
This solution ensures positive values at all time steps.

In the second case, a continuous time random walk with independent, normally-
distributed random numbers independent of the variable at the former time step is given
by the following stochastic differential equation:
dS; = mu x dt + sigma * W,

This process shows self-similarity and scaling behavior.

2.4.2.2 Ornstein-Uhlenbeck process

The Wiener process can be extended to incorporate a serial dependency (like a memory)
- tomorrows values are dependent on the level of todays values. The Ornstein-Uhlenbeck
(OU) process has a mean-reversion term, which is directly proportional to the difference of
the actual value from the mean reversion level:

dX; = mrege * (Mriever — Xi—1) * dt + sigma x dW,

where the mean reversion rate mr, . can be seen as a proportional parameter of a restoring
force. The increments dX; tend to point to the mean-reversion level mri.,o;. The result
of the formula is an addditive term to the risk factor depending on the past level and a
stochastic term (modeled by the Wiener process).

2.4.2.3 Square-root diffusion process

In order to exclude negative values in the OU mean-reversion process, an additional repelling
force is needed, which ensures that the level of the stochastic variables stays away from zero.
The square-root diffusion process (SRD) has an additional term, which is multiplied with
the standard deviation and the random variable. This term is identified as the square root
of the variable at the former time step:

dX; = mryaie ¥ (MPiever — Xi—1) * dt + sigma * sqri(Xe_1) * dW,

Negative values for the variables are excluded if the following equation is fulfilled:

2 % MTrate * MTeper >= SIgMa

Chapter 2: User guide 11

2.4.3 Financial models

The stochastic models which have been presented in the last section, are used as basis
for financial models. In order to map stochastic processes to financial models, properties
of financial models are identified and subsequently stochastic models chosen in order to
generate simulated time series of risk factors with appropriate and desired behavior.

2.4.3.1 Geometric Brownian motion

The standard financial model for equity, real-estate and commodity risk factors is a geomet-
ric Brownian motion (GBM), which utilizes the extended Wiener process, where the drift
and random variable are proportional to the risk factor value. Due to this proportionality
the time series can not reach zero and the modeled risk factors values always stay positive.
This is reflected in the real world behavior of equity or commodity prices, where the intrinsic
value of these assets cannot fall below zero.

2.4.3.2 Brownian motion

In a Brownian motion (BM) model, the time-series increments are a function of drift, time
and standard deviation, but not dependent on the actual level of the financial variable. For
certain types of risk factors (e.g. interest rates), one assumes a Brownian motion so that the
modeled price movements are given as additive shocks which are completely independent
on the actual risk factor value. Therefore, negative values of the modeled risk factors are
allowed.

2.4.3.3 Vasicek model

In the long run, the market movements of exchange rates and interest rates seem to be
mean-reverting. This behavior can be modeled by a Ornstein-Uhlenbeck process resulting
in a so called one factor short rate model proposed by Vasicek. The Ornstein-Uhlenbeck
process allows for negative values, which reflects the real world behavior of short rates since
the financial crisis, where interest rates of AAA-rated government bonds had negative yields
for at east some time.

2.4.3.4 Cox-Ingersoll-Ross and Heston model

If one doesn’t want to allow negative values for interest rates or other mean-reverting risk
factors, a square-root diffusion process can be chosen as stochastic model. This results in
the short-rate model of Cox-Ingersoll-Ross or the Heaston model for modelling at-the-money
volatility used in option pricing.

2.4.4 Parameter estimation

Once an appropriate model is chosen for the risk factor, one has to define input param-
eters for the stochastic differential equations. One approach is to use historical data to
estimate statistic parameters like volatility, correlations or mean-reversion parameters. An-
other approach is to apply expert judgment in selecting input parameters for the models.
OCTARISK uses the specified parameters to generate Monte-Carlo scenarios - the selection
of the parameter estimation approach is up to the reader.

Typically, parameters are extracted from historical time series on weekly or monthly
data on the past three to five years. Unfortunately, availability of historical time series for

Chapter 2: User guide 12

all risk factors is one of the main constraints in parameter estimation for private investors.
Most often, one has to overcome problems of missing data and the need for interpolation
or extrapolation. In future versions scripts for parameter estimation will be provided.

In an ideal world, at first appropriate risk types and risk factors are selected, then the
validation of a stochastic model is performed and the appropriateness of the model and the
assumptions (like length of historical time series) is verified in back-tests. Nevertheless, no
stochastic model can completely describe the financial markets, giving rise to model error
(both in parameter estimation and model selection).

2.4.5 Monte-Carlo Simulation

A Monte-Carlo approach is chosen to generate the risk factor shocks in all scenarios. There-
fore a risk factor correlation matrix (e.g. estimated from historical time series) and ad-
ditional parameters describing statistical distributions can be used to generate random
numbers, which are utilized as input parameters to stochastic models and finally lead to
correlated risk factor shocks with the desired properties.

In order to account for non-normal distributions and higher order correlation effects in
the Monte-Carlo simulation, a copula approach is chosen to generate dependent, correlated
random numbers. In a first step, the input correlation matrix is used to generate nor-
mally distributed, correlated random numbers with zero drift and unit variance. In a next
step, either a Gaussian copula or a student-t copula is utilized to transform the normally
distributed random variables to uniformly distributed random variables, while either the
linear correlation dependence (for Gaussian copulas) or additionally the non-linear depen-
dence structures (for student-t copulas) is preserved. In a last step, these random numbers
are incorporated into a function which chooses for each risk factor the appropriate distribu-
tion in a certain way, that standard deviation, skewness and kurtosis are matched with the
input parameters. Therefore the Pearson distribution system is used as a basis for genera-
tion of random variables. Subsequently, in each of the Monte-Carlo scenarios a specific set
of correlated risk factor shocks, dependent on the selected financial models, is generated,
while the marginal distributions have desired standard deviation, skewness and kurtosis.

A further potential problem is the model error from the Monte-Carlo method. Only a
limited number of Monte-Carlo scenarios can be generated and valuated (in the range of
10000 to 100000), thus leaving space for not represented scenarios which could alter the risk
measures.

2.4.6 Stress testing

A complementary method to the stochastic scenario generation is to directly define shocks
to risk factors. This scenario analysis is normally done in order to calculate the portfolio
behavior in well known historic scenarios (like Financial Crisis 2008, devaluation of Asian
currencies in the mid 90s, terrorist attack on 9/11, Black Friday in October 1987) or in
scenarios, where one only is interested in the behavior of the portfolio value in isolated
shocks (like all equities decline by 30pct in value, a +100bp parallel shift in interest rates).
Possible sources of scenarios are provided by regulators and can be easily adapted for
personalized stress scenarios.

Chapter 2: User guide 13

2.5 Instrument valuation

After the scenarios are generated, one has to calculate the behavior of financial instruments
to movements in the underlying risk factors. Therefore two different approaches are cho-
sen: the sensitivity approach applies relative valuation adjustments to the instrument base
values proportional to the defined sensitivity. The valuation adjustments are derived from
movements in value of the underlying risk factors. Secondly, in a full valuation approach,
the scenario dependent input parameters are fed into a pricing function which (re)calculates
the new absolute value of the instrument in each particular scenario.

2.5.1 Sensitivity approach

The sensitivity approach is performed for all instruments which have a linear dependency on
the movement of underlying risk factor values, or where not enough data or no appropriate
pricing function exists for a full valuation approach.

2.5.1.1 Linear dependency on risk factor shocks

For the risk assessment of equities, commodities or real estate instruments it is appropriate
to take only the linear dependency on risk factor movements into account. Each risk factor
has sensitivities to underlying risk factors. An instrument inherits the amount of shock
proportional to the defined sensitivity value from the underlying risk factors.

A typical example is a developed market exchanged traded fund (ETF) with exposure to
North America, Europe and Asia. The ETF will follow the price movements of these three
risk factors, so the sensitivities are simply the relative exposure to the three equity markets
(e.g. 0.5, 0.3 and 0.2). These sensitivities are then used to calculate the weighted shock that
is applied to the actual instrument value. The same principle holds for single stock, where
sensitivities to appropriate risk factors and to an idiosyncratic risk term (an uncorrelated
random number) can be selected. A useful method for calibration is the multi-dimensional
linear regression. The resulting betas from this regression can be taken for the sensitivities
to regressed risk factors. The remaining alpha and estimation error resembles the sensitivity
to the idiosyncratic risk. The exposure to the uncorrelated random number can be derived
from one minus the adjusted R_square of the regression. Since the R_square gives the
amount of variability that is explained by the regression model, one minus R_square is
equal to the amount of uncorrelated random fluctuations which are not covered by the
input parameters.

2.5.1.2 Approximation with sensitivity approach

For instruments with insufficient information one can also choose the sensitivity approach.
One example are funds consisting mainly of bonds. Without look-through, one has no infor-
mation about the exact cash flows of the underlying bonds. Instead, often the duration (and
convexity) of the fund is known. These two types of sensitivity (duration and convexity)
can then be used to calculate the change in value to interest rate shocks. Therefore, the
absolute interest rate shock at the node, which equals the Macaulay duration, is calculated
as absolute difference compared to the base rate. This change in interest rate level (dIR) is
directly transformed to a relative value shock (dV) by the formula

dV = duration * dI R + convexity x dI R?

incorporating both sensitivities.

Chapter 2: User guide 14

2.5.2 Full valuation approach

The core competency of a quantitative risk measurement project is full valuation, where the
absolute value of financial instruments is calculated from raw input parameters by a special
pricing function. Some input parameters to the pricing function are scenario dependent,
other are inherent to the instrument. The most important input parameters have to be
modeled by stochastic processes and can subsequently be fed into the pricing function,
where the new, scenario dependent absolute value of the instrument is calculated. At the
moment, the following full valuation pricing functions are implemented in OCTARISK:

2.5.2.1 Option pricing

European plain-vanilla options are priced by the Black-Scholes model (See Section 5.76
[option_bs], page 120). The Black-Scholes equation provides a best estimate of the option
price. The underlying financial instrument and implied volatility are modeled as risk factors
in order to calculate the new option price in each scenario. The risk free rate will be also
made scenario dependent in order to capture the interest rate sensitivity of the option price.
Further information is provided by numerous textbooks.

For American options a more sophisticated model has to be used for pricing. Unfor-
tunately, binomial models (like the Cox-Rubinstein-Ross model) or finite-difference models
are not feasible for a full valuation Monte-Carlo based approach, since the computation
time for a large amount of time steps and MC scenarios is too high due to missing paral-
lelization opportunities. Instead, a Willow-Tree model is implemented to price American
options. Within that model, instead of using the full binomial tree with increasing number
of nodes per time step, a constant number of nodes at each pricing time step is utilized to
approximate the movements of the underlying price. With optimized transition probabili-
ties, the whole model relies on a smaller amount of total nodes which significantly decreases
computation time and lowers memory consumption (See Section 5.78 [option_willowtree],
page 121, implementation for further details).

A calibration is performed to align the model price based on provided input parameters
with the observed market price. This calibration calculates an implied spread which is
added to the modeled volatility as a constant offset.

The implied volatility itself is dependent on the option strike level and time to maturity
(term). In order to grasp that behavior, the so called volatility smile is modeled by a
moneyness vs. term volatility surface, where changes in the spot price lead to moneyness
changes. Therefore, the actual implied volatility behavior (at-the-money implied volatility
vs. moneyness vs. term) of the market is preserved for the pricing.

Amongst simple underlying instruments or indizes, baskets of several indizes or instru-
ment can be used. A diversified basket volatility is calculated which serves as im plied
volatility for the option derivative. Baskets itself are modeled as synthetic instruments.

Besides plain vanilla options, closed-form solutions are used for pricing of European
Barrier and European Asian options. Continously geometric average asian options are
priced by Kemna and Vorst model of 1990, while arithmetic average asian options are
priced by Levy (1992) model.

Chapter 2: User guide 15

2.5.2.2 Swaption pricing

Furopean plain-vanilla swaptions are priced via the closed form solution of the Black-76
model or the Bachelier model. (See Section 5.99 [swaption_black76], page 127, and See
Section 5.98 [swaption_bachelier], page 126, for details). Again, a calibration is performed
to align the model price based on provided input parameters with the observed market price.
The calibrated implied volatility spread is subsequently added to the modeled volatility as
a constant offset. The volatility smile for the specific term is also given by volatility cubes.
The interest rate implied volatility can be set up by three axes: underlying tenor, swaption
term and moneyness. For each of these combinations an implied volatility can be set. For
Swaption underlyings either discount curves or fixed and floating leg swaps can be used.

2.5.2.3 Forward and Future pricing

Equity and Bond forwards and futures can be valuated. Therefore market indizes can be
set up, which serve as underlyings for the forwards. The value of the forward or future is
calculated as the payoff at maturity (underlying value minus strike) discounted back to the
valuation date. For futures, net basis and accrued interest can be taken into account. (See
Section 5.86 [pricing_forward], page 122, for details).

2.5.2.4 Cash flow instrument pricing

Cash flow instruments are specified by the following sets of variables: cash flow dates and
corresponding cash flow values. Moreover, each cash flow instrument has an actual market
price and an underlying interest rate curve, which has to be provided as a separate risk
factor. Before the full valuation can be carried out, the spread over yield is calculated to
align the observed market price with the value given by the pricing function. The spread
over yield is then assumed to be a constant offset to the scenario dependent interest rate
spot curve. For each scenario, all cash flows are discounted with the appropriate interest
rate and spread curve. The present value is then given by the sum of all discounted cash
flows. Credit spreads are modeled as separate risk factors, thus capturing credit spread risk
for cash flow instruments.

2.5.2.5 Bond instrument pricing

The Bond instrument class covers the full spectrum of plain vanilla bond instruments: fixed
rate bonds, floating rate notes, fixed and floating swap legs, fixed rate amortizing bonds,
mortage backed securities with prepayments, floating swap legs based on CMS rates, and
many more. During pricing, at first the cash flows are rolled out. The forward rates for
calculation of floating payments are scenario dependent. After the rollout is done, a spread
over yield is calibrated in order to match the market price with the theoretical value. For
calculation of the net present value of the bonds, a discount curve can be set. If the curves
have attached risk factors, the pricing will be fully scenario dependent. CMS floating swaps
can also have special cash flowst based on averages or capitalized CMS rates. Moreover,
convexity adjustment (according to Hull or Hagan) can be taken into account.

Moreover, bonds with embedded call or put options can be modelled. Therefore a
trinomial Hull-White tree is used to price these embedded European or American bond
options. See (See Section 5.75 [option_bond_hw], page 119, for further details.

Chapter 2: User guide 16

2.5.2.6 Cap and floor instrument pricing

The CapFloor class covers caps and floor instruments on discount curves. The cash flow
rollout of these caps and floors also covers CMS rates and convexity adjustment. Both
Black and Normal models are implemented, thus allowing for negative interest rates.

2.5.3 Synthetic instruments

In order to model a fixed share combination of instruments, the synthetic class was intro-
duced. The value of the synthetic instrument is calculated as the linear combination of all
underlying instrument. Synthetic instruments can be used to e.g. model portfolios with
full look-through or to combine fixed and floating legs to swaps. Moreover, more complex
instrument including option behaviour can be modeled, if e.g. a bond and a option is
combined to an instrument with embedded call / put optionality.

2.5.4 Stochastic instruments

In order to pre-calculate cash flow values and instrument prices in other risk systems, the
stochastic instrument class was introduced. Based on modelled risk factor values (e.g.
correlated uniformly or normal distributed random variables), random numbers are used
to determine quantile numbers and then draw cash flows or values from special curves or
surfaces. These objects are used as storage containers for quantile dependent values.

2.5.5 Retail instruments

Retail instruments are sold to customers in the private banking and insurance market. Typ-
ically, no second market exists for such products, making an theoretical valuation necessary.
Typically, savings products and defined contribution plans have some put option behavior
and can therefore be redeemed by the customer (often times to pre-agreed values and times)
Moreover, savings rates can be adjusted at any point in time or extra payments could be
made. Octarisk’s Retail class reflects such optionalities and allows for efficient calculation
of interest and spread risk as well as sensitivities for such products allowing for a full risk
assessment of all financial products in a private investors portfolio.

2.6 Aggregation

After the valuation of all instruments in each scenario, one has to aggregate all parameters
of instruments contained in a fund. Therefore all fund position values are derived by
multiplying the position size with the instrument value in each scenario. The resulting
sorted fund profit and loss distribution is then used to calculate the value-at-risk at fund
level.

If less than 50001 MC scenarios are used in OCTARISK, it is recommended to smooth the VAR
by a Harrell-Davis estimator (See Section 5.50 [harrell_davis_weight], page 111, for details).
A weighted average of the scenarios around the confidence interval scenarios is calculated.
The HD VAR shall reduce the Monte-Carlo error. Aggregation keys (e.g. currency, ID,
asset class) can be freely specified to get a full portfolio risk drill down.

2.7 Reporting

Risk reporting has to be tailored to the investment objective and should ideally adress
underlying risk types, give clear indication if and where action is required and should assist

Chapter 2: User guide 17

in monitoring and adjusting strategic and / or tactical asset allocation. Both quantitative
and qualitative aspects could be taken up by proper risk reporting and allow for historic
comparison and movement analysis. With OCTARISK all these aspects of risk management
can be covered in custom risk reports.

2.7.1 Risk Report

Some impressions of the reporting capabilities of OCTARISK are shown:

Key figures .

_____ 31-Mar-2020 .-~ VaR 7.0% U\, 8.2%
£:7] Reporting Date 2\ 10d@99.9% \ Volatility p.a.
= 855 kEUR 59627 EUR (€221%
== Base Value _«ll \VaR (abs.) ¥ Y Diversification
:
Category | Measure Target | Actual | Status
Risk SRRI class 5 5 on track
Risk VaR Trend — Ny monitor
Allocation | Total Deviation <10% 14% -
Allocation Risk Impact <10% 15%
Allocation | Equity Deviation <10% 21% -
Allocation Cash >90000 EUR | 100000 EUR on track
Risk Country Risk (very) low low on track
Risk ESC Rating AAA-A A on track
Risk Concentration low-mid very high -
Allocation Liguidity high: >50% high: 71% on track

Portfolio Risk Distribution

Visualization of profit and loss distribution in all MC scenarios:

6000
5000
4000
3000
2000
1000

0
-10

-

-5 0]
Relative shock to portfolio (in Pct)

29814

-29814

Absolute PnL (in EUR)

-80241
10

S

-58627

-T %

50000

MonteCarlo Scenarios

Chapter 2: User guide

A history of portfolio basevalues and relative VaR for past reporting dates is given. The light

VaR Evolution and Backtesting

blue line indicates the lower base value threshold as imposed by pre-date VaR:

1.05e+06 [

1e+06

1
—8— Base Value
——

18

!

59627

= &
o 1s £
~— 950000 [o
3 g
o T
g g
o 900000 |-], €
@
3]
@ 2
850000 |-
18
800000 @&—— Base value thresholkd
imposed by pre-date VaR
. g
30-Nov-2019 31-Dec-2019 31-Jan-2020 29-Feb-2020 31-Mar-2020 30-Apr-2020
Reporting Date
L.
Portfolio Risk Classification
< lower risk SRRI classification target: 5 higher risk >

3

4

5

6

7

52842

79263

-

Strategic Asset Allocation

1] 2
- [e T

Comparison of portfolio target asset allocation (AA) vs. actual allocation. An estimation of

VaR impact induced by the deviation is given both on portfolio and asset class level:

AssetClass | Basevalue | TargetAA | Actual AA | Deviation | RiskImpact
Real Estate 40005 EUR 9.0% 4.7% | -36943 EUR -4574 EUR
Fixed Income 217982 EUR 20.0% 25.5% 46986 EUR 188 EUR
Alternative 11612 EUR 2.0% 1.4% | -5488EUR | -2870EUR
Cash 100000 EUR 10.0% 11.7% 14502 EUR -0 EUR
Equity 410526 EUR 50.0% 48.0% | -16964 EUR -1693 EUR
Commodity 74856 EUR 9.0% 8.8% -2093 EUR -189 EUR
Assets 854981 EUR 100% 100% | 122976 EUR -9138 EUR

18

Chapter 2: User guide

Stress Testing |

Portfolio profitand losses for both parametric and historic stress scenarios:
Stresstest Results

ButterflyPos
ButterflyNeg
Infl-100bp
Infl+100bp
Covid-19
FinCiisls2008
ASIANFLU
DotCom2000
BITCOIN-90Pct
FX+10Pct
EQ/RE/COM-30Pct
BlackMonday1987

TwistNeg
TwistPos
IR+100bp
IR-100bp ‘ . . |
-200 -150 4100 50 0 50
Absolute PnL (in KEUR)
\ 7

Dividend and Coupon Forecast .

Future cash flows from the portfolio including dividends and coupon payments for the next
12 month are forecast to allow for reinvesting planing. Base scenario cash flows are shown
in blue, while the cash flows at risk are given in red:
Projected future cash flows
12000

g

I 10000 - .

£

= 800 - .

5

g 6000 [1

o

; 4000 1

=

g 2000 - .

[&]

ol e LB e e
Apr May Jun Ju Aug Sep Oet MNov Dec Jan Feb Mar
Cash flow date
\\ >

Asset Class and Currency Decomposition \

Portfolio risk breakdown into asset classes (AC), currencies and their VaR decomposition:
AC/Currency | Basevalue | Pct. | Standalone VaR | Decomp VaR | Pct.
Portfolio 854981 EUR | 100.0% 59627 EUR 59627 EUR | 100.0%
Real Estate 40005 EUR 4.7% 5116 EUR 4953 EUR 8.3%
Fixed Income | 217982 EUR 25.5% 8992 EUR 870 EUR 1.5%
Alternative 11612 EUR 1.4% 7086 EUR 6072 EUR 10.2%
Cash 100000 EUR 11.7% 0EUR -0 EUR -0.0%
Equity 410526 EUR 48.0% 41801 EUR 40965 EUR 68.7%
Commodity 74856 EUR 8.8% 9963 EUR 6767 EUR 11.3%
EUR 801258 EUR 93.7% 60454 EUR 60193 EUR | 100.9%
usD 53723 EUR 6.3% 3821 EUR -566 EUR -0.9%

Chapter 2: User guide

Largestand Riskiest Positions

Main position contributions to portfolio basevalue (leftchart) and portfolio VaR (right chart):

ETF0M2 Other
ETF012
Other
BTCOIN

SPARPLAN
GOLDPHYS

ETF127 ETFOE0
ETFO60
CASHEUR ETF127

Position Decomposition

Portfolio risk breakd own of Top 10 riskiest positions and their VaR decomposition:

PositionID | Basevalue | Standalone VaR | Decomp VaR | Pct.
Portfolio 854981 EUR 59627 EUR 59627EUR | 100.0%
ETFO12 157618 EUR 15707 EUR 15291 EUR 25.6%
ETF060 119410 EUR 11899 EUR 11584 EUR 19.4%
ETF127 94563 EUR 12000 EUR 10312 EUR 17.3%
COLDPHYS 73418 EUR 9772 EUR 6637 EUR 11.1%
BTCOIN 1612 EUR 7086 EUR 6072 EUR 10.2%
AOLCQL 40005 EUR 5116 EUR 4953 EUR 8.3%
ETF114 38935 EUR 3880 EUR 3777EUR 6.3%
PensionB 23338 EUR 3629 EUR 745EUR 1.2%
SPARPLAN 121113 EUR 2983 EUR 602 EUR 1.0%
SILVERPHYS 1437 EUR 191 EUR 130 EUR 0.2%
BSV 17522 EUR 352 EUR 71 EUR 01%
PensionA 2286 EUR 67 EUR 18EUR 0.0%
CASHEUR 100000 EUR -0 EUR -0 EUR -0.0%
A188AL 53723 EUR 3821 EUR -566 EUR -0.9%
Other 0EUR - 0EUR 0.0%

What-If Analysis

Theincremental VaR shows the impact on portfolio VaR afterinitially adding the top 10 riski-
est positions, while the marginal VaR gives the change in portfolio VaR by investing addi-
tional T000EUR into the position (reversed sign of impact after divesting):

Position 1D | Basevalue ‘ Incremental VaR | Marginal VaR
ETFO12 157618 EUR 14830 EUR 97EUR
ETF060 119410 EUR 11419 EUR 97 EUR
ETF127 94563 EUR 10122 EUR 109 EUR
COLDPHYS 73418 EUR 6668 EUR 90 EUR
BTCOIN 1612 EUR 6257 EUR 522 EUR
AOLCQL 40005 EUR 4974 EUR 124 EUR
ETF114 38935 EUR 3767 EUR 97 EUR
PensionB 23338 EUR 468 EUR 32EUR
SPARPLAN 121113 EUR 476 EUR SEUR
SILVERPHYS 1437EUR 130 EUR 90 EUR
BSV 17522 EUR 70 EUR 4EUR
PensionA 2286 EUR 17 EUR 8EUR
CASHEUR 100000 EUR O EUR O EUR
A188AL 53723 EUR -827EUR -11EUR

20

Chapter 2: User guide

Risk Factor Quantile Dependence

Tail shocks for selected interest rates, equity, alternative, commodity and real estate risk fac-
tors are shown. Most relevant quantiles (e.g. VaR 99.9% or Standard Deviation 84.1%) allow
foranalysis of exposure transitions.

z0

Risk Factor Shock (in Pet.)

—— Riskiactor Equity Ewope
—— Riskfactor IR EUR 10year
Riskiactor EUR Infl Expectation Curve
—— Risdfacior Prysical Gad
——— Rigkfacior BicgnELR
——— Rigkiacior Real Estaie Wrld DM

&0

a0 L
£ e

s
Quantile

Liquidity Classificatio
Exposure of all financial assets to the three liquidity classes high, mid and low:

tradeable within one day

high | (e.g. cash, ETF or bonds/stocks
traded via exchange)

tradeable within one week

mid | (e.g. physicalcommodities

or savings account)

tradeable within more than one
low | weekand/orpenalty for
termination of contract

(e.g. pension scheme)

high

21

Chapter 2: User guide

Interest Rate and Inflation Term Structure N

Asummary of risk free interest rate and inflation expectation term structures under current
market conditions as well as in selected tail scenarios show portfolio interest rate sensitivity:
Curve IDIR_EUR
0.006 T T T T
0.004 |- -1
0.002 -1
g of .
I% -0.002 =
—#— Base Scenario Rates
-0.004 -
0.006 | — VaR scenarios
0.008 1 1 L 1 I
0 2000 4000 6000 8000 10000 12000
Nodes (in days)
Curve IDIR_USD
0.02 T T T T
0.015 — — B
W*—H**H*
g o.01 1
—— Base Scenario Rates
0.005 -
— VaR scenarios
1 1 L 1 T
00 2000 4000 6000 8000 10000 12000
Nodes (in days)
Curve IDINFL_EXP_EUR
0.02 T T T T
0.Ms5 -
§ 0.01 - -1
—*— Base Scenario Rates
0.005
— VaR scenarios
1 1 Il 1
00 2000 4000 6000 8000 10000 12000
Nodes (in days)
\ J

VaR Risk Factor Shocks \

Average tail scenaric shocks in MC VaR scenarios for selected equity,
forex, alternative, commodity and real estate risk factors are shown:

T T T T
Riskiactor RealEstate World DM
Riskfactor Bitcoin EUR [

Riskfactor Physical Gold -
Riskfactor Forex EUR USD [
Riskfactor Equity EmergingMarkets |-
Riskfactor Equity Europe [

Portfolio [~

-60 -50 -40 -30 -20 -10 i}
Risk factor shocks (in pct.)

Chapter 2: User guide

Concentration Risk Networlk
Concentration risk network for all entities related tothe portfolio (e.g. issuer, custodian

bank, counterparty, custodian bank of the underlying, country of origin) including their

credit rating (see embedded legend):

Tssuer ——m
Counserpany ————=
Designated Sponsor ————— =
Custodian Bunk Underlying ——=

World Exposure and Country Risk Map
World exposure and risk map for all financial assets (e.g. equity, saving deposits and other

fixed income instruments) including a country risk assessment according to ND-GAIN

country readiness risk methodology:

* -*

-

Exposure & Risk Exposure & Risk
B DE37% low HCN 4% medium
W US 3% low KR1%very low
CB 4% low TW 1% med ium
P 4% low IN 1% high
FR3%low BR1% medium B Developed Markets 87% B Emerging Markets11% © Other2%
\

Chapter 2: User guide 24

@ Disclaimer ~
Allinformation has been composed with diligence and care. No guarantee for the accuracy

of the provided resultsis given. The reports should not be treated as a complete risk analysis

of the financial portfolio in general, only certain market risk factors were taken into account.
Further known and unknown unknowns exist. No personalized investmentadvice is given.
Send questions and comments to schinzilord@octarisk.com or visit www.octarisk.com
for further documentation and source code published under the GNU GPL.

GJ/ OCTA

2.7.2 Solvency II regulatory reporting

Octarisk can be used to perform asset data Solvency II regulatory reporting required for as-
set manager reporting to (re-)insurance companies. The solvency2_reporting script performs
a full valuation of a portfolio and exports position attributes according to the Tripartite
v4.0 industry standard.

2.8 Graphical user interface

Octarisk’s graphical user interface (GUI) allows for full user interaction. Based on an
existing session, where instruments, market data, risk factors, portfolios and stress tests
are defined, instrument properties can be changed and portfolio contributions can be
altered. Moreover, a full insight into single instruments is possible, where e.g. sensitivities
like key rate durations or option’s Greeks can be investigated. It is also possible to extract
scenario values. Once instrument attributes or position sizes are modified, a full valuation
of the selected instruments and a reaggregation of the total portfolio takes place to
examine impacts on all risk figures. It is also possible to add instruments as new positions
to the selected portfolio. In this case, the new position has a position size of zero. For
removing positions, simply set the size to zero. The following image gives an overview of
the GUI and highlights all interaction possibilities:

Add instruments
to selected portfolio

C Cctrskepen - — m—— =2
| Instrument Section Valuation Date: 30-5ep-2016 Portfolio Section
Available Instruments: ALYCO4 =l Add Position -> Available Portfolios: FUND_AAA |

Change position

Show and edit all {
Btrument Attribute: Attribute Value: Position ID: Position Size: .
instrument attributes = - sizes and reaggreate
[eff_duration -l 2.2729 ALYCO4 o) | 10 on the fly
Base ValueT 1053.76970415 EUR Portfolio Base Value: 134558.1137 EUR
Show instrument " vaie at risk (250,0095): [.ee43682 EUR Value at Risk (250,0.095): 23796 _— Show portfolio
base value, e base value,
VaR and Value at Risk (250d,0.995): -0.6542 % Value at Risk (250d,0.995): -25.8418 % stress values and VaR
stress results tresstest Name: Stress Profit or Loss: Position Decomp VaR: 18.9794 EUR
[IR+100bp = F3O736857L FUR Stresstest Name: Stress Profit or Loss:

Show position
contribution to portfolio Va

(DecompVaR)
Recake Automatic reval_uatmn Aggregete P
and reaggregation —_—

Instrument Pl Distribution Portfolio Pnl Distribution

IR+100bp RN -2722.1029 EUR

“amasur

Praft and Laas IEUR)

=

0000

w0 0000 Exit T o000

Y —
) 2017 schinzlord@octansk.com

25

3 Developer guide

This chapter describes the actual implementation of the project. All calculation steps and
the input and output files will be described in detail as well as examples are provided.

3.1 Implementation concept

A lightweight implementation concept was chosen for OCTARISK. One script is responsible
for the complete work flow from input file parsing to aggregation and reporting. This script
calls subfunctions to parse input data and construct objects, generate scenario dependent
input values and call appropriate pricing functions. To assist developers, script are intro-
duced for automatic generation of class diagrams (function print_class2dot) and function
dependencies (get_dependencies). Moreover, all function and class descriptions, which are
contained in the source files, are automatically extracted and appended to this document
(see functions get_documentation and get_documentation_classes for details). A command
line help for all functions (help functionname) and classes (Classname.help) is possible. To
get performance insights, use the profiler (function profiler_analysis) to conveniently show
detailled information.

3.1.1 Process overview

The following process summarizes the complete work flow:

Octarisk 0.4.0 data flow

Text reports.

Positions and Portfolio Position -
specifications objects))
< Aggregation engine B
Graphical reports

Export all instrument
values and properties

output file

Instrument Instrument
specifications objects
el .. Update with
Matrix Matrix ... scenario values
specifications objects el

Volatility data input

Parameter Parameter

specifications object Siime
P objects

Stress test Stresstest

specifications objects ‘

Nario_generation

Correlation Correlation .'
specifications matrix 5
- Riskfactor

objects
Riskfactor ‘
specifications

Market objects Im_iex
ket data input (Index,Curves,Surfaces) objects

Pricing engine

p| Curve
objects

i

Input files Generating
processing input objects

Generating Instrument pricing & Generating

Scenario generation valuation objects subsequent Aggregation output objects

Input files (See Section 3.3 [Input files|, page 29) are parsed into structures, matrizes and
objects. After parsing of these input files, Monte-Carlo and stress test scenarios are gen-
erated taking into account the correlation matrix and marginal risk factor distributions as

Chapter 3: Developer guide 26

well as custom stress test scenario configurations. The scenario dependent shocks are then
stored for each risk factor object. The scenario shocks are then applied to all market data
objects (mainly indizes, curves and exchange rates) which have attached risk factors. Sce-
nario dependent values for each market data object are calculated by taken into account the
scenario dependent shock, the market data base value and the risk factor stochastic model.
In a next step instrument pricing takes place. For each instrument object the product
type dependent calculation rule is triggered. If the sensitivity approach is chosen, scenario
shocks (delta values) are applied to the instrument base value. In case of a full valuation
approach, the instrument is priced with specified pricing engines taking into account all
scenario dependent market object values. A mark-to-market procedure is applied, which
results in equal theoretical and market base values (by setting an appropriate spread over
yield or volatility spread). After all instruments have been priced, the aggregation starts
for all portfolios and their positions. Final results are printed in graphical and text based
reports reflecting the market risk measures.

3.1.2 Class diagram

OCTARISK was set up in an object oriented programming style for all objects like instru-
ments, risk factors, curves, indizes and surfaces. Inside the methods of the aforementioned

Chapter 3: Developer guide 27

classes, pricing or interpolation functions are called. The following class diagram gives an
overview of all classes:

Chapter 3: Developer guide

See the class documentation in the next chapter for further information.

3.2 Implementation workflow

3.2.1

Overview

28

The following enumeration gives an overview of the main script octarisk.m (See Section 5.68
[octarisk], page 116, for details):

1. DE
1.
2.
3.

FINITION OF VARIABLES
Parse parameter file
read in general variables

read in VAR specific variables

2. INPUT

1.
2
3
4.
d.
3. CA
1.

N e N

8.
9.

Processing Instruments data

. Processing Riskfactor data

. Processing Positions and Portfolio data

Processing Stresstest data
Processing Market data
LCULATION
Model Riskfactor Scenario Generation
e Load input correlation matrix
e Get distribution parameters from riskfactors
e call MC scenario generations
Monte Carlo Riskfactor Simulation for all timesteps
Take risk factor stress scenarios from stressdefinition
Process yield curves and volatility surface
Update market data objects with risk factor shocks
Full Valuation of all Instruments in all MC and stress scenarios
Portfolio Aggregation
e loop over all portfolios / positions
e VaR Calculation
e sort arrays
e Get Value of confidence scenario
e make vector with Harrel-Davis Weights
e (Calculate Expected Shortfall
Print Report including position VaRs
Plotting

4. HELPER FUNCTIONS

Chapter 3: Developer guide 29

3.3 Input files

In the following, all required input files are introduced. The basic file format for instru-
ments, positions, stresstests, risk factors and market data objects is comma separated with
a variable number of header attributes. Each of these input files is further split into differ-
ent sub types. Each sub type has his own header, which is directly followed by all entries
belonging to this sub type. Each Header line is introduced by the string Header and with-
out any space followed by the SUBTYPE in capital letters (e.g. HeaderFRB for fixed rate
bonds of the instrument class). Each header attribute contains the name of the header and
the type of the data: NameTYPE. There exist exactly four different attribut types:

e CHAR: any character combination without commas. For definition of lists (e.g. several
riskfactors and weights), also type CHAR is used. The list entries are separated by |
(pipe symbol): 365173011095|365017300 can be used for a definition of curve nodes.

e DATE: date in the format DD-MMM-YYYY (e.g. 29-Apr-2016) for the use of maturity
dates or issue dates.

e BOOL: boolean variable. Either 1 or 0 or TRUE or FALSE

e NMBR: numeric variable (can also be complex). Can be an integer or float with double
precision.

Empty attribute values (e.g. ValueA,,1234) are ignored during parsing of the input files.

3.3.1 Risk factors

The risk factors input file contains all risk factors which are modeled by stochastic processes.
The shocks of these risk factors are then used as input to the calculation of the scenario
dependent index, curve, volatility and instrument values which have these risk factors as
attached risk drivers.

The columns of the risk factors file consist of the following entries:

e HeaderRISKFACTOR: Introduction of risk factors

e nameCHAR: Name of the riskfactors, this follows the convention RF_TYPE_XYZ
(string).

e idCHAR: Unique ID of the risk factors. To keep it simple, just take name (string).

e typeCHAR: Risk factor types follow typical asset class conventions (string). These
types are explained in Section 2.2 [Introducing market risk], page 8.

e descriptionCHAR: A short description of the risk factor. String maximum length of
255 characters.

e modelCHAR: Model ID of the underlying stochastic process (string). See section
Models for further explanation.

e meanNMBR: Mean of the stochastic process used in scenario generation
e stdNMBR: Standard deviation (expected annualized volatility)

e skewNMBR: Skewness

e kurtNMBR: Kurtosis

o value_baseNMBR: Start value for the mean reversion (e.g. Ornstein-Uhlenbeck or
square root diffusion) processes

e mr_leve]NMBR: Mean reversion level

Chapter 3: Developer guide 30

e mr_rateNMBR: Mean reversion rate

e nodeNMBR: Risk factor node of first dimension (e.g. term node of IR Curve or option
term node of index vol surface)

e node2NMBR: Risk factor node of second dimension (e.g. moneyness of index vol
surface or Underlying term of IR vol cube)

e node3NMBR: Risk factor node of second dimension (e.g. moneyness of IR vol cube)

An example of the input file is given:

HeaderRISKFACTOR ,nameCHAR,idCHAR,typeCHAR,descriptionCHAR ,modelCHAR ,meanNMBR, ...|J}

. stdNMBR, skewNMBR, kurtNMBR,value_baseNMBR,mr_levelNMBR,mr_rateNMBR, nodeNMBR node2NMBR , no
Item,RF_EQ_DE,RF_EQ_DE,RF_EQ,Equity Germany,GBM,0,0.18,-0.5,5,9820,,,
Item,RF_EQ_EUR,RF_EQ_EUR,RF_EQ,Equity Euro,GBM,0,0.18,-0.5,5,,,,
Item,RF_FX_EURUSD,RF_FX_EURUSD,RF_FX,FX EUR USD,SRD,0,0.08,0,3,1.09,1.2,0.001,
Item,RF_VOLA_EQ_DE,RF_VOLA_EQ_DE,RF_VOLA,Impl Vol Ger,SRD,0,0.1,0,3,0.31,0.21,0.02,]}
Item,RF_IR_EUR_1Y,RF_IR_EUR_1Y,RF_IR,IR EUR 1lyear,BM,0,0.0011,0,3,0.0008,,,365
Item,RF_IR_EUR_10Y,RF_IR_EUR_10Y,RF_IR,IR EUR 10year,BM,0,0.0032,0,3,0.0026,,,36500
Item,RF_IR_EUR_20Y,RF_IR_EUR_20Y,RF_IR,IR EUR 20year,BM,0,0.006,0,3,0.015,,,73000
Item,RF_VOLA_COM_GOLD,RF_VOLA_COM_GOLD,RF_VOLA,VolGold,SRD,0,0.1,0,3,0.15,0.16,0.03,1
Item,RF_SPPR_EUR_HY_5Y,RF_SPR_EUR_HY_5Y,RF_SPR,HY,BM,0,0.083,0.24,10,0.05,,,18250

3.3.2 Positions

The positions input file contains all portfolios and positions. Positions must point to in-
struments which are defined in the instruments input file. Both portfolios and positions are
stored to structures. Thus, additional columns can be appended, which could then be used
as positional attributes.

The columns of the portfolio contain the following characteristics :

e HeaderPORTFOLIO: Indicating a new header specifying a portfolio

e idCHAR: Unique ID of the portfolio. Used in the filename of the report
e nameCHAR: Portfolio name

e descriptionCHAR: Description of the portfolio (optional)

e HeaderPOSITION: Indicating a new header specifying a position

e port_idCHAR: 1D of the portfolio, where the position belongs to. Must be valid
portfolio ID.

o idCHAR: ID of the instrument

e quantityNMBR: quantity of the instrument in the portfolio

Example definitions for some positions (positive quantity: long position, negative quan-
tity: short position) in two portfolios:

Chapter 3: Developer guide 31

HeaderPORTFOLIO, idCHAR ,nameCHAR,descriptionCHAR
Item,FUND_AAA,Global Diversified,Global diversified test portfolio
Item,FUND_BBB,Global Derivatives,Global derivatives test portfolio
HeaderPOSITION, port_idCHAR, idCHAR,quantityNMBR
Item,FUND_AAA,AORFFT,65

Item,FUND_AAA,A1JB4Q,179

Item,FUND_AAA,A1J7CK,135

Item,FUND_AAA,A1YC04,20

Item,FUND_AAA,BTCOIN,1.98

Item,FUND_AAA,0DAXC20160318,-0.01

Item,FUND_AAA,EQFORWO1,1

Item,FUND_AAA,SYNTH01,0.1

Item,FUND_AAA,CASH_EUR, 1000

Item,FUND_BBB,AOLGQL, 723

Item,FUND_BBB,0DAXC20160318,-0.1

Item,FUND_BBB,EQFORWO1,1

Item,FUND_BBB,SYNTHO1,1

Item,FUND_BBB,CASH_EUR, 1000

3.3.3 Instruments

The instruments input file contains the specifications of all instruments which are priced
during instrument valuation. The instrument universe is split into different product types.
Each of the product type has his own file header, reflecting the huge differences in instrument
specification.

The basic header attributes, which all instruments have in common, are given. For detailed
information of additional columns see the class diagram.

e HeaderXXYYZ: Product type specific header attributes, e.g. CASH, FRB, FRN,
SENSI, SYNTH, OPT, FWD, SWAPT, ...

e nameCHAR: Name of the instrument which will be used for the reports.

e idCHAR: Unique ID of the instrument. Used as a reference in position input file. Is
used as default aggregation key for reporting.

o value_baseNMBR: Actual market value of the instrument.

o typeCHAR: Instrument type specifying the sub type inside the specified instrument
class (e.g. EQFWD for equity forward or OPT_EUR_C for an European call option).

e descriptionCHAR: A short description of the instrument. Maximum length of 255
characters.

e currencyCHAR: Currency of the instrument. If no appropriate currency risk factor is
defined, they are mapped to EUR. Is used as default aggregation key for reporting.

e asset_classCHAR: Instrument asset class. Is used as default aggregation key for re-
porting.

Example definitions for cash instruments:

HeaderCASH,nameCHAR,1idCHAR,value_baseNMBR, typeCHAR,descriptionCHAR, currencyCHAR,asset_classCHAI
Item,Cash Account EUR,CASH_EUR,1,CASH,EUR Cash Account,EUR,cash

Chapter 3: Developer guide 32

3.3.4 Stress tests

The stress test input file contains the definition of all stress test. Each stress test describes
the behavior of one or more risk factor in a particular scenario. The risk factor shock values
are directly applied to all risk factor IDs which have to be fully given (no regular expressions
allowed).

The columns of the stress test file consists of following entries:

e HeaderSTRESSTESTS: indicates stress tests

e idCHAR: Unique ID of the stresstest.

e nameCHAR: Name of the stresstest, used in reporting.

e objectCHAR: Object ID which will be shocked (curve, index, surface, not a risk factor)
e objecttypeCHAR: type of object to be shocked (e.g. curve or index)

e shocktypeCHAR: type of shock (e.g. absolute or relative shock or specific value used
in stress scenario)

e termCHAR: term of curve be shocked (several terms are separated by pipes)
e axis_.xCHAR: x coordinate of object (e.g. tenor of IR volatility cube)

e axis_yCHAR: y coordinate of object (e.g. term of IR volatility cube)

e axis_.zCHAR: z coordinate of object (e.g. moneyness of IR volatility cube)

e method_interpolationCHAR: interpolation method of shocks (only applicable to curves
and surface objects)

e shockvalueCHAR: shock value applied to objects (several shocks to all terms are sep-
arated by pipes)

An example for possible stress test definitions are given:

#Stresstests Specifications
HeaderSTRESSTESTS, idCHAR ,nameCHAR, objectCHAR, objecttypeCHAR, shocktypeCHAR,

. termCHAR,axis_xCHAR,axis_yCHAR,axis_zCHAR,method_interpolationCHAR, shockvalueCHARJ
Item,STRESSO1,IR-100bp, IR_EUR, curve,absolute,365,,,,1linear,-0.01
Item,STRESSO1,IR-100bp,IR_USD,curve,absolute,365,,,,linear,-0.01
Item,STRESS02,IR+100bp, IR_EUR,curve,absolute,365,,,,linear,+0.01
Item,STRESS02,IR+100bp,IR_USD,curve,absolute,365,,,,linear,+0.01
Item,STRESS03,SPREAD-100bp, SPREAD_EUR_FIN_A, curve,absolute,365,,,,linear,-0.01
Item,STRESS04,SPREAD+100bp,SPREAD_EUR_FIN_A, curve,absolute,365,,,,1linear,+0.01
Item,STRESS05,INFL-100bp, INFL_EXP_CURVE, curve,absolute,365,,,,linear,-0.01
Item,STRESS06,INFL+100bp, INFL_EXP_CURVE, curve,absolute,365,,,,linear,+0.01
Item,STRESSO7,EQ-30Pct,EQ_DE,index,relative,,,,,linear,0.7
Item,STRESS08,EQ+30Pc,EQ_DE, index,relative,,,,,linear,1.3
Item,STRESS09,ASIANFLU,VOLA_IR_EUR_0.0002,surface,value,,365]|3650,365|3650,,,0.015]/0.025;0.01]
Item,STRESS10,IR_EURTwistPos,IR_EUR,curve,absolute,365|3650|7300,,,,linear,-0.01]/0.01]0.03}

New stress tests can be easily appended to the specification file.

3.3.5 Volatility surface

For all options and swaptions, the implied volatility is necessary to calculate the derivative
theoretical value. In order to feed the implied volatility into the system, a term / moneyness
surface has to be specified for index instruments and a underlying tenor / term / moneyness
for IR instruments in a separate file. For all underlying index risk factors the impl. volatility

Chapter 3: Developer guide 33

data file has to be named like vol_index_. RF_XX_YY.dat and vol_ir_RF_XX_YY.dat for all
interest rate risk factor. The risk factor ID will be used to automatically identify the
appropriate file. The structure of the file is a linearized version of the volatility surface (for
term / moneyness instruments):

% term moneyness implied_vola

30 1.2 0.4
30 1.0 0.35
30 0.8 0.3
90 1.2 0.5
90 1.0 0.45
90 0.8 0.4

and the volatility cube for tenor term moneyness for interest rate instruments:

#tenor term moneyness implied_vola
365.00000 365.00000 1.00000 0.50000
365.00000 730.00000 1.00000 0.40000
365.00000 1095.00000 1.00000 0.30000
730.00000 730.00000 1.00000 0.35000
730.00000 365.00000 1.00000 0.30000
730.00000 1095.00000 1.00000 0.35000
365.00000 365.00000 1.25 0.50000
365.00000 730.00000 1.25 0.50000
365.00000 1095.00000 1.25 0.30000
730.00000 730.00000 1.25 0.35000
730.00000 365.00000 1.25 0.30000
730.00000 1095.00000 1.25 0.35000

All tenor and term values are given in days from valuation date.

During the full valuation approach the moneyness is a function of the underlying risk
factor spot price over rate and the constant strike price over rate. A linear interpolation for
the moneyness and a nearest neighbour mapping for tenors terms and constant extrapolation
will be performed to calculate the new scenario dependent implied volatililty. Since the at-
the-money volatility is itself a risk factor (modeled as a factor), the interpolated volatility
will be adjusted by this scenario dependent factor. This process combines the conservation
of volatility surface or cubes shape with the single factor stochastic modeling of the at-the-
money volatility. Furthermore, it is also possible to generate a file with just one constant
volatility.

3.3.6 Marketdata objects file

Market data objects store all relevant objects for full valuation instrument pricing. These
objects can be interest and spread curves, aggregated curves (sum of curves), market indizes,
exchange rates, volatility surfaces and cubes as well as call and put schedules. The base
values of these objects can then be shocked by scenario dependent values, which were
calculated for the attached risk factors. The market data objects are specified in a separate
file following the same conventions as the instruments input file:

e HeaderCURVE: market object specific Header classification for curves

e idCHAR: Unique ID of the market curve. Note: if it is required that the curve will be
shocked during stress tests or in MC scenarios, the ID of the market curve must have
an attached risk factor starting with RF_ followed by the market curve ID. Otherwise,
an automatic mapping is not possible

Chapter 3: Developer guide 34

e nameCHAR: Name of the market curve
e typeCHAR: Type of the curve (e.g. Spread Curve or Discount Curve)
e descriptionCHAR: Description of the object

e method_interpolationCHAR: Interpolation method for the market curve (e.g. linear
or monotone-convex). This interpolation method can be different to the interpolation
method from the attached risk factor. For all nodes of the market curve the relative of
absolute scenario dependent shock values (Derived from the attached risk factor curve)
is interpolated and then applied to the market curve node

e nodesCHAR: Pipe separated nodes of the market curve in days from the valuation
date

e rates_baseCHAR: Pipe separated rates of the market curve. One rate needed for each
specified node

e compounding_typeCHAR: Compounding type of curve (defaults to continuous)

e compounding_freqCHAR: Compounding frequency of curve (defaults to annual, only
relevant if compounding type equals discrete. Otherwise, value will be neglected)

e day_count_conventionCHAR: Day count convention of curve (defaults to act/365)

e floorNMBR: floor rate for base and stress rates. The floor is applied when rates are
set or, if there are already specified rates, the new floor is applied to old rates

e capNMBR: cap rate for base and stress rates
e american_flagBOOL: boolean flag for american call and put option schedule

e HeaderAGGREGATEDCURVE: market object specific Header classification for aggre-
gated curves

e idCHAR: Unique ID of the aggregated curve. No stress or MC shocks are applied
directly on the aggregated curve. The underlying curves have to be shocked directly.

e nameCHAR: Name of the aggregated market curve.
e typeCHAR: Type of the curve (Aggregated Curve)
e descriptionCHAR: Description of the object

e method-_interpolationCHAR: Interpolation method for the market curve (e.g. linear
or monotone-convex). This interpolation method can be different to the interpolation
method from the attached risk factor. For all nodes of the market curve the relative of
absolute scenario dependent shock values (Derived from the attached risk factor curve)
is interpolated and then applied to the market curve node.

e nodesCHAR: Pipe separated nodes of the market curve in days from the valuation
date.

e incrementsCHAR: Pipe separated ID of underlying curve increments. Specify all curve
increments which are then used in curve stacking. An incremental spread model can
be specified with this procedure

e compounding_typeCHAR: Compounding type of curve (defaults to continuous)

e compounding_freqCHAR: Compounding frequency of curve (defaults to annual, only
relevant if compounding type equals discrete. Otherwise, value will be neglected)

e day_count_conventionCHAR: Day count convention of curve (defaults to act/365)

Chapter 3: Developer guide 35

floorNMBR: floor rate for base and stress rates. The floor is applied when rates are
set or, if there are already specified rates, the new floor is applied to old rates

capNMBR: cap rate for base and stress rates

Please note: If the curve increments of the aggregated curve has differenct settings for

compounding type, frequency and day count convention, an automatic conversion will be
performed.

HeaderINDEX: market object specific Header classification for indizes and exchange
rates. Basically, all market objects with exactly one scenario dependent value can be
stored here

idCHAR: Unique ID of the market index. Note: if it is required that the market index
will be shocked during stress tests or in MC scenarios, the ID of the market curve
must have an attached risk factor starting with RF_ followed by the market curve ID.
Otherwise, an automatic mapping is not possible

nameCHAR: Name of the market index

typeCHAR: Type of the index (e.g. Equity Index, Commodity Index, Exchange Rate)
currencyCHAR: Currency of the object

descriptionCHAR: Description of the object

value_baseNMBR: Market value of the index

HeaderSURFACE: market object specific Header classification for volatility surfaces
and cubes.

idCHAR: Unique ID of the market volatility surface.
nameCHAR: Name of the volatility surface
typeCHAR: Type of the surface (e.g. INDEX, IR)
descriptionCHAR: Description of the object

moneyness_typeCHAR: Moneyness type of volatility surface. Can be K/S for relative
moneyness and K-S for absolute moneyness

method_interpolationCHAR: interpolation method for volatility surface or cube (e.g.
nearest or (bi- or tri-)linear)

riskfactorsCHAR: Pipe separated string with ids of underlying risk factors

HeaderCURVE, idCHAR ,nameCHAR, typeCHAR,,descriptionCHAR ,method_interpolationCHAR,nodesCHAR,rates_]
Curve,IR_EUR,IR_EUR,Discount Curve,EUR-SWAP Curve,monotone-convex,365|1095|1825|3650|7300]1095
0.00519251|-0.00508595|-0.0036776210.00185694|0.00776253]|0.00999986|0.00123,,,,0.0001,0. 1}
Curve,IR_USD,IR_USD,Discount Curve,USD-SWAP Curve,monotone-convex,365|1095|1825|3650|7300]1095
Curve,SPREAD_EUR_HY,SPREAD_EUR_HY,Spread Curve,SPREAD_EUR_High Yield Curve,linear,1825,0.02,di:
HeaderAGGREGATEDCURVE, 1dCHAR ,nameCHAR, typeCHAR ,descriptionCHAR ,method_interpolationCHAR,nodesCl
Curve, AGGR_SPREAD_USD_BBB,AGGR_SPREAD_USD_BBB,Aggregated Curve,Aggregated Spread Curve USD BBB
Curve,AGGR_EUR_FIN_BBB,AGGR_EUR_FIN_BBB, Aggregated Curve,Aggregated Spread Curve EUR USD,monot
convex,30|91|365|73011095,IR_EUR|SPREAD_EUR_HY,simple,annual,act/365

HeaderINDEX, idCHAR,nameCHAR, typeCHAR, currencyCHAR,descriptionCHAR, value_baseNMBRj]
Index,EQ_DE,DAX30,Equity Index,EUR,DAX Equity Index German Blue Chips,9820
Index,COM_GOLD,Gold,Commodity Index,USD,Gold 1 Ounce USD, 1073

Index,FX_EURUSD,EUR_USD,Exchange Rate,EUR,EUR USD Exchange rate,1.08

HeaderSURFACE, idCHAR ,nameCHAR , typeCHAR,descriptionCHAR ,moneyness_typeCHAR ,method_interpolation
Surface,VOLA_IR_EUR,VOLA_IR_EUR,IR,Test description,K-S,linear ,RF_VOLA_IR_EUR_730_365|RF_VOLA_

Chapter 3: Developer guide 36

These two market objects (indizes and curves) reflect market objects with either just
one scenario dependent value (a scalar like for indizes) or a certain constant number of
dependent values per scenario (like a curve). For these objects it is possible to specify
an arbitrary number of risk factors in order to get the most granular scenario dependent
behaviour. For convenience reasons and because of the increased memory consumption,
indizes and curves are up to now the only possible market objects. For volatility surface or
cubes it is only possible to specify risk factors with just one scenario dependent value (at-
the-money volatility). The market object (the volatility cube) is then offsetted by a constant
value in each scenario, thus preserving the base value volatility smile. It is therefore not
possible to model a scenario dependent smile.

3.3.7 Correlation matrix

The correlation file contains the correlations between risk factor in a linearized format.
Only the lower (or upper) triangular matrix including the diagonal values has to be set.
The first line is a header describing the three columns, but there is no possibility to .
The order of the risk factors in the correlation file can be arbitrary. Only the subset of
all risk factors, which are contained in the correlation file, are used during MC scenario
generation. The risk factors specified in the correlation file must be a subset of risk factors
specified in the risk factors file. During parsing of the file validation checks are performed
in order to make sure, that all correlation pairs have been set. Otherwise an exception will
be raised. After parsing, the correlation file is stored in Octaves built-in matrix format.
The correlation matrix undergoes then a Cholesky decomposition to generate correlated
random variables with a copula approach. Based on these correlated randum numbers, the
four distribution moments (mean, standard deviation, skewness, kurtosis), which are given
in the risk factor input file, are used to generate the marginal distributions for each risk
factor based on the Pearson type I-VII distribution system. If the correlation matrix is
not positive semi-definite, all negative eigenvalues are set to slightly positive numbers in an
iterative approach, thus leading to positive semi-definiteness. Be aware, that the correlation
settings may change. Further statistics on the correlation settings and on the statistical
parameters of the marginal risk factor distributions may be automatically calculated if
the appropriate flag is set in the settings. In this case, a correlation heat map shows the
deviations of the final correlation settings compared to the input correlation settings. The
correlation file contaings the following columns:

e RFICHAR: ID of first risk factor
e RF2CHAR: Unique ID of second risk factor
o CorrelationNMBR: correlation between these two risk factors

An example is given:
RF1CHAR,RF2CHAR,CorrelationNMBR
RF_EQ_DE,RF_EQ_DE, 1
RF_EQ_EUR,RF_EQ_DE,0.96479531
RF_EQ_EU,RF_EQ_DE,0.890684579999999
RF_EQ_NA,RF_EQ_DE,0.81541365

Chapter 3: Developer guide 37

3.4 Output files

Both graphical risk report data in PDF and PNG format as well as LaTeX tables with
risk figures are exported to the reporting sub folder. From there further external report
generation can take place on a custom basis.

38

4 QOctave octarisk Classes

In the following sections you find the octarisk classes texinfo.

4.1 Instrument.help

object

= Instrument (name, id, description, type, [Octarisk Class]
currency, base_value, asset_class)

Superclass for all instrument objects.

name (string): name of object
id (string): id of object
description (string): description of object

type (string): instrument type in list [cash, bond, debt, forward, option, sensi-
tivity, synthetic, capfloor, stochastic, swaption]

currency (string): ISO code of currency
base_value (float): actual base (spot) value of object

asset_class (sring): instrument asset class

The constructor of the instrument class constructs an object with the following prop-
erties and inherits them to all sub classes:

name: name of object

id: id of object

description: description of object

value_base: actual base (spot) value of object
currency: ISO code of currency

asset_class: instrument asset class

type: type of instrument class (Bond,Forward,...)
value_stress: vector with values under stress scenarios

value_mc: matrix with values under MC scenarios (values per timestep per col-
umn)

timestep_mc: MC timestep per column (cell string)

Chapter 4: Octave octarisk Classes 39

Dependencies of class:

@Instrument::del_scen_data

A

P @Instrument::getValue

@Instrument::Instrument @Instrument::isProp
—>

P @Instrument::valuate

Pt get_basis
4.2 Matrix.help
object = Matrix(id) [Octarisk Class]
object = Matrix() [Octarisk Class]

Class for setting up Matrix objects.
This class contains all attributes and methods related to the following Matrix types:

e Correlation: specifies a symmetric correlation matrix.

In the following, all methods and attributes are explained and a code example is
given.
Methods for Matrix object obj:

e Matrix(id) or Matrix(): Constructor of a Matrix object. id is optional and
specifies id and name of new object.

e obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

Chapter 4: Octave octarisk Classes 40

e obj.get(attribute): Getter method. Query the value of specified attribute.

e obj.getValue(xx,yy): Return matrix value for component on x-Axis xx and com-
ponent on y-Axis yy. Component values are recognized as strings.

e Matrix.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method]

Attributes of Matrix objects:
e id: Matrix id. Has to be unique identifier. Default: empty string.
e name: Matrix name. Default: empty string.
e description: Matrix description. Default: empty string.
e type: Matrix type. Can be [Correlation]

e components: String cell specifying matrix components. For symmetric correla-
tion matrizes x and y-axis components are equal.

e matrix: Matrix containing all elements. Has to be of dimension n x n, while n is
length of components cell.

e components_xx: Set automatically while setting components cell
e components_yy: Set automatically while setting components cell

For illustration see the following example: A symmetric 3 x 3 correlation matrix is
specified and one specific correlation for a set of components as well as the whole
matrix is retrieved:

m = Matrix();

component_cell = cell;

component_cell(1) = 'INDEX_A';

component_cell(2) "INDEX_B';

component_cell(3) '"INDEX_C';

m = m.set('id', 'BASKET_CORR', 'type', 'Correlation','components',component_cell);]j
m = m.set('matrix',[1.0,0.3,-0.2;0.3,1,0.1;-0.2,0.1,11);

m.get('matrix')

corr_A_C = m.getValue('INDEX_A', 'INDEX_C')

Chapter 4: Octave octarisk Classes 41

Dependencies of class:

P @Matrix::get

@Matrix::getValue
_>
@Matrix::Matrix

—>
@Matrix::isProp

P @Matrix::set ————Ppt return_checked_input

4.3 Curve.help

object =

object

Curve(id) [Octarisk Class]
= Curve() [Octarisk Class]

Class for setting up Curve objects.
This class contains all attributes and methods related to the following Curve types:

Discount Curve: specify discount rates. Can be used as underlying for aggregated
curves.

Spread Curve: specify spread rates. Can be used as underlying for aggregated
curves.

Dummy Curve: used as default curve with no special meaning

Aggregated Curve: stacked curve which combines underlying curves by aggrega-
tion functions (e.g. sum, factor)

Prepayment Curve: specify prepayment rates per node (e.g. PSA curves).
Call Schedule: curve used for Bonds with embedded call options

Put Schedule: curve used for Bonds with embedded put options

Hazard Curve: curve used for CDS. Gives default probability per cf date

Historical Curve: curve with historical rates of index levels. Used for inflation
linked or averaging instruments

Inflation Expectation Curve: specify inflation expectation rates used for inflation
linked instrument pricing

Chapter 4: Octave octarisk Classes 42

Shock Curve: specify absolute or relative shocks per node, which can then be
applied to other Curve types.

In the following, all methods and attributes are explained and a code example is
given.
Methods for Curve object obj:

Curve(id) or Curve(): Constructor of a Curve object. id is optional and specifies
id and name of new object.

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.
obj.getRate(scenario,node): Return scenario curve values at given node (in days).
Interpolation or Extrapolation is performed according to specified methods. sce-
nario can be ’base’, 'stress’ or a certain MC timestep like '250d’.
obj.getValue(scenario): Return all scenario curve values. scenario can be "base’,
‘stress’ or a certain MC timestep like '250d’.
obj.apply_rf_shocks(scenario,riskfactor_object): Set shock curve values for sce-
nario Scenario shocks from provided riskfactor_object are used
obj.isProp(attribute): Return true, if attribute is a property of Curve class.
Return false otherwise.

Curve.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo|. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method]

Attributes of Curve objects:

id: Curve id. Has to be unique identifier. Default: empty string.

name: Curve name. Default: empty string.

description: Curve description. Default: empty string.

type: Curve type. Can be [Discount Curve (default), Spread Curve, Dummy

Curve, Aggregated Curve, Prepayment Curve, Call Schedule, Put Schedule, His-
torical Curve, Inflation Expectation Curve, Shock Curve]

day_count_convention: Day count convention of curve. See ’help get_basis’ for
details. Default: ’act/365\n

basis: Basis belonging to day count convention. Value is set automatically.

compounding_type: Compounding type. Can be continuous, discrete or simple.
Default: ’cont’

compounding_freq: Compounding frequency used for discrete compounding. Can
be [daily, weekly, monthly, quarterly, semi-annual, annual]. Default: ’annual’

curve_function: Type Aggregated Curve only: specifies how to aggregated curves,
which are specified in attribute increments. Can be [sum, product, divide, fac-
tor|. [sum, product, divide] specifies mathematical operation applied on all curve
increments. [factor| allows only one increment and uses curve_parameter for
multiplication. Default: ’sum’

curve_parameter: Type Aggregated Curve only: used as multiplication parame-
ter for factor curve_function.

Chapter 4: Octave octarisk Classes 43

e increments: Type Aggregated Curve only: List of IDs of all underlying curves.
Use curve_function to specify how to aggregated curves.

e method_extrapolation: Extrapolation method. Can be ’constant’ (default) or
"linear’.

e method_interpolation: Interpolation method. See ’'help interpolate_curve’ for
details. Default: ’linear’.

e ufr: Smith-Wilson Ultimate Forward Rate. Used for Smith-Wilson interpolation
and extrapolation. Defaults to 0.042.

e alpha: Smith-Wilson Reversion parameter. Used for Smith-Wilson interpolation
and extrapolation. Defaults to 0.19.

e cap: Cap rate. Cap rate is enforced on all set rates. Set to empty string for no
cap rate. Default: empty string.

e floor: Floor rate. Floor rate is enforced on all existing and future rates. Set to
empty string for no floor rate. Default: empty string.

e nodes: Vector with curve nodes.
e rates_base: Vector with curve rates. Has to be of same column size as nodes.

e rates_mc: Matrix with curve rates. Has to be of same column size as nodes.
Columns: nodes, Lines: scenarios. MC rates for several MC timesteps are stored
in layers.

e rates_stress: Matrix with curve rates. Has to be of same as nodes. Columns
correspond to nodes, lines correspond to scenarios.

e timestep_mc: String Cell array with MC timesteps. Automatically appended if
values for new timesteps are set.

e shocktype_mc: Specify how to apply risk factor shocks in Monte Carlo scenar-
ios and for method apply_rf_shocks. Can be [absolute, relative, sln_relative].
Automatically set by scripts. Default: absolute

e shocktype_stress: Specify Stress risk factor shocks for method apply_rf_shocks.
Can be [absolute, relative] by stree scenario configuration.

e sin_level: Vector with term specific shift level for risk factors modelled with
shifted log-normal model. Automatically set by script during curve setup.

e american_flag: Flag for American (true) or European (false) call feature on
bonds. Valid only if Curve type is call or put schedule. Default: false.

For illustration see the following example: A discount curve c is specified. A shock
curve s provides absolute shocks for stress and relative shocks for MC scenarios, which
are linearly interpolated and subsequently applied to the discount curve c. In the end,
stress and MC discount rates are interpolated for given nodes with method getRate,
while all curve rates are extracted with getValue.

Chapter 4: Octave octarisk Classes 44

c Curve();

C c.set('id', 'Discount_Curve', 'type', 'Discount Curve',

'nodes', [365,3650,7300], 'rates_base', [0.01,0.02,0.04],
'method_interpolation', 'linear', 'compounding_type', 'continuous', ...}
'day_count_convention', 'act/365');

s = Curve();

s = s.set('id','IR Shock','type', 'Shock Curve', 'nodes',[365,7300], ...}
'rates_base',[], 'rates_stress',[0.01,0.01;0.02,0.02;-0.01,-0.01;-0.01,0.011, ...H
'rates_mc',[1.1,1.1;0.9,0.9;1.2,0.8;0.8,1.2], 'timestep_mc', '250d', ...}
'method_interpolation', 'linear', 'shocktype_stress', 'absolute',
'shocktype_mc', 'relative');

¢ = c.apply_rf_shock('stress',s);

c = c.apply_rf_shock('2504',s);

c_base = c.getRate('base',1825)

c_rate_stress = c.getRate('stress',1825)

c_rate_250d = c.getRate('QSOd',1825)

c_rates_250d = c.getValue('250d"')

Dependencies of class:

@Curve::apply_rf_shock

A

P @Curve::get interpolate_curve

—>
@Curve::getRate

:>
@Curve::Curve

—>

interpolate_curve_vectorized

@Curve::getValue interpolate_curve_vectorized_mc

@Curve::isProp

P @Curve:i:set ————————— P return_checked_input

Chapter 4: Octave octarisk Classes 45

4.4 Forward.help

object = Forward(id) [Octarisk Class]

object =

Forward() [Octarisk Class]

Class for setting up Forward and Future objects. Possible underlyings are bonds,
equities and FX rates. Therefore the following Forward types are introduced:

Bond: Forward on bond underlyings. Underlying instrument will be priced incl.
accrued interest.

Equity: Forward on equity underlyings like stocks or equity funds. Only Contin-
uous dividends are possible.

FX: Forward on currencies. Price is depending on underlying price and foreign
and domestic discount factors.

EquityFuture: Standardized contract on equity underlyings. A net basis can be
specified.

BondFuture: Standardized contract on Bond underlyings. A net basis can be
specified.

In the following, all methods and attributes are explained and a code example is
given.
Methods for Forward object obj:

Forward(id) or Forward(): Constructor of a Forward object. id is optional and
specifies id and name of new object.

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.

obj.calc_value(valuation_date,scenario, discount_curve_object, underly-
ing_object, und_curve_object) Calculate the value of Forwards based on
valuation date, scenario type, discount curve and underlying instruments.
Underlying discount curve und_curve_object is used for Forwards on Bond or
FX rates only.

obj.getValue(scenario): Return Forward value for given scenario. Method inher-
ited from Superclass Instrument

obj.calc_sensitivities(valuation_date, discount_curve_object, underlying_object,
und_curve_object) Calculate sensitivities (the Greeks) of all Forward and Future
by numeric approximation.

Forward.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method|

Attributes of Forward objects:

id: Instrument id. Has to be unique identifier. (Default: empty string)
name: Instrument name. (Default: empty string)
description: Instrument description. (Default: empty string)

value_base: Base value of instrument of type real numeric. (Default: 0.0)

Chapter 4: Octave octarisk Classes 46

e currency: Currency of instrument of type string. (Default: "EUR’) During in-
strument valuation and aggregation, FX conversion takes place if corresponding
FX rate is available.

e asset_class: Asset class of instrument. (Default: 'derivative’)
e type: Type of instrument, specific for class. Set to 'Forward’.
e value_stress: Line vector with instrument stress scenario values.

e value_mc: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

o timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

e issue_date: Issue date of Forward (date in format DD-MMM-YYYY)
e maturity_date: Maturity date of Forward (date in format DD-MMM-YYYY)

e day_count_convention: Day count convention of curve. See ’help get_basis’ for
details (Default: ’act/365)

e compounding_type: Compounding type. Can be continuous, discrete or simple.
(Default: ’cont’)

e compounding-freq: Compounding frequency used for discrete compounding. Can
be [daily, weekly, monthly, quarterly, semi-annual, annual]. (Default: ’annual’)

e strike_price: Strike price (Default: 0.0)
e underlying_id:ID of underlying object. (Default:)

e underlying_price_base: Underlying base price. Used only if underlying object is
a risk factor. Risk factor shocks are applied to underlying base price. (Default:
0.0)

e underlying_sensitivity: Underlying sensitivity used only, if underlying object is
a risk factor. Risk factor shocks are scaled by this sensitivity (Default: 1.0)

e discount_curve: Discount curve (Default: 'IR_EUR’)

e foreign_curve: Foreign curve, used for Bond and FX Forwards only (Default:
'TR_USD’)

e multiplier: Multiplier. Used to scale price and value of one constract. (Default:
1)

e dividend_yield: Dividend yield is part of total cost of carry. Used for Equity
Forwards only. (Default: 0.0)

e convenience_yield: Convenience yield is part of total cost of carry. Used for
Equity Forwards only. (Default: 0.0)

e storage_cost: Storage cost (yield) is part of total cost of carry. Used for Equity
Forwards only. (Default: 0.0)

e spread: Unsued: Spread of Forward (Default: 0.0)

o cf dates: Unused: Cash flow dates (Default: [])

o cf values: Unused: Cash flow values (Default: [])

e component_weight: Used for Bond futures only. Scale future future price.

e net_basis: Net basis of futures. Used only, if calc_price_from_netbasis is set to
true.

Chapter 4: Octave octarisk Classes 47

e calc_price_from_netbasis: Boolean Flag. True: use net_basis to calculate future
price. (Default: false).

e theo_delta: Sensitivity to changes in underlying’s price. Calculated by method
calc_sensitivities.

e theo_gamma: Sensitivity to changes in changes of underlying’s price. Calculated
by method calc_sensitivities.

e theo_vega: Sensitivity to changes in volatility. Calculated by method
calc_sensitivities.

e theo_theta: Sensitivity to changes in remaining days to maturity. Calculated by
method calc_sensitivities.

e theo_rho: Sensitivity to changes in risk free rate. Calculated by method
calc_sensitivities.

e theo_domestic_rho: Sensitivity to changes in domestic interest rate. Calculated
by method calc_sensitivities.

e theo_foreign_rho: Sensitivity to changes in foreign interest rate. Calculated by
method calc_sensitivities.

e theo_price: Forward price. Calculated by method calc_value.

For illustration see the following example: An equity forward with 10 years to ma-
turity, an underlying index and a discount curve are set up and the forward value
(-27.2118960639903) is calculated and retrieved:

= Curve();

= c.set('id','IR_EUR', 'nodes', [365,3650,7300]);

= c.set('rates_base',[0.0001002070,0.0045624391,0.009346842]) ;
= c.set('method_interpolation', 'linear');

= Index();

= i.set('value_base',326.900);

= Forward();

= f.set('name', 'EQ_Forward_Index_Test', 'maturity_date','26-Mar-2036");|}
= f.set('strike_price',426.900);

= f.set('compounding_ freq','annual');

= f.calc_value('31-Mar-2016', 'base',c,i);

.getValue('base')

Hh Hh Hh Hh Hh Hh - H- O O O O

Chapter 4: Octave octarisk Classes 48

Dependencies of class:

@Forward::calc_sensitivities

—>

pricing_forward

—P>

@Forward::calc_value

@Forward::Forward

—>
@Forward::get

P @Forward::set ————Pppt return_checked_input

4.5 Option.help

object
object

= Option(id) [Octarisk Class]
Option() [Octarisk Class]

Class for setting up Option objects. Possible underlyings are financial instruments or
indizes. Therefore the following Option types are introduced:

OPT_EUR_C: European Call option priced by Black-Scholes model.
OPT_EUR_P: European Put option priced by Black-Scholes model.

OPT_AM_C: American Call option priced by Willow tree model, CRR binomial
tree or Bjerksund-Stensland approximation.

OPT_AM_P: European Put option priced by Willow tree model, CRR binomial
tree or Bjerksund-Stensland approximation.

OPT_BAR_C: European Barrier Call option. Can have all combinations of out
or in and up or down barrier types. Priced with Merton, Reiner, Rubinstein
model.

OPT_BAR_P: European Barrier Put option. Same restrictions as Barrier Call
options.

OPT_ASN_C: European Asian Call option. Average rate only. The following
compounding types can be used: geometric continuous (Kemna-Vorst90 pricing
model) or arithmetic continuous (Levy pricing model)

OPT_ASN_P: European Asian Put option. Same restrictions as Asian Call op-
tions.

OPT_BIN_C: European Binary Call option. Binary types gap, supershare, asset-
or-nothing or cash-or-nothing. Priced with Reiner-Rubinstein model.

Chapter 4: Octave octarisk Classes 49

OPT_BIN_P: European Binary Put option. Same restrictions as Binary Call
options.

OPT_LBK_C: European Lookback Call option. Lookback types floating_strike
or fixed_strike. Priced with Conze and Viswanathan or Goldman, Sosin and
Gatto model.

OPT_LBP_P: European Lookback Put option. Same restrictions as Lookback
Call options.

In the following, all methods and attributes are explained and a code example is
given.
Methods for Option object obj:

Option(id) or Option(): Constructor of a Option object. id is optional and
specifies id and name of new object.

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.

obj.calc_value(valuation_date,scenario, —underlying, discount_curve, volatil-
ity_surface, path_static) Calculate the value of Options based on valuation date,
scenario type, discount curve, underlying instrument and volatility surface.
The pricing model is chosen based on Option type and instrument model
attributes. A path to precalculated Willow trees for pricing American options
by Willowtree model can be provided.

obj.calc_greeks(valuation_date,scenario, underlying, discount_curve, volatil-
ity_surface, path_static) Calculate sensitivities (the Greeks) for the given Option
instrument. For plain-vanilla European Options the Greeks are calculated by
Black-Scholes pricing. The Greeks of all other Option types will be calculated
by numeric approximation.

obj.calc_vola_spread(valuation_date, underlying, discount_curve, volatil-
ity_surface, path_static) Calibrate volatility spread in order to match the
Option price with the market price. The volatility spread will be used for
further pricing.

obj.getValue(scenario): Return Option value for given scenario. Method inher-
ited from Superclass Instrument

Option.help(format,returnflag): show this message. Format can be [plain text,

html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method]

Attributes of Option objects:

id: Instrument id. Has to be unique identifier. (Default: empty string)
name: Instrument name. (Default: empty string)

description: Instrument description. (Default: empty string)

value_base: Base value of instrument of type real numeric. (Default: 0.0)

currency: Currency of instrument of type string. (Default: "EUR’) During in-
strument valuation and aggregation, FX conversion takes place if corresponding
FX rate is available.

Chapter 4: Octave octarisk Classes 50

e asset_class: Asset class of instrument. (Default: ’derivative’)
e type: Type of instrument, specific for class. Set to ’Option’.
e value_stress: Line vector with instrument stress scenario values.

e value_mc: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

e timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

e maturity_date: Maturity date of Option (date in format DD-MMM-YYYY)

e day_count_convention: Day count convention of curve. See ’help get_basis’ for
details (Default: ’act/365)

e compounding_type: Compounding type. Can be continuous, discrete or simple.
(Default: ’cont’)

e compounding_freq: Compounding frequency used for discrete compounding. Can
be [daily, weekly, monthly, quarterly, semi-annual, annual]. (Default: ’annual’)

e spread: Interest rate spread used in calculating risk free interest rate. Default:
0.0;

e discount_curve: ID of discount curve. Default: empty string

e underlying: 1D of underlying object (instrument or risk factor). Default: empty
string

e vola_surface: 1D of volatility surface. Default: empty string
e vola_sensi: Sensitivity scaling factor for volatility. Default: 1

e strike: Strike value of Option (used to set maximum and minimum values for
lookback options). Default: 100

e spot: Spot value of underlying instrment. Only used, if underlying is risk factor.

e multiplier: Multiplier of Option. Resulting Option price is scales by this multi-
plier. Default: 5

e div_yield: Continuous dividend yield of underlying (act/365 day count convention
assumed). Default: 0.0

e timesteps_size: American Willow Tree timestep size (in days). Default: 5
e willowtree_nodes: American Willow Tree nodes per timestep. Default: 20

e pricing_function_american: American pricing model [Willowtree,BjSten]. De-
fault: 'BjSten’

e binary_type: Binary option type. Can be [‘cash’,’gap’,’asset’,’supershare’]. De-
faults to 'cash’.

e Jookback_type: Lookback option type. Can be [floating_strike’, fixed _strike’].
Defaults to 'floating_strike’.

e payoff_strike: Binary Option payoff strike (used as e.g. upper bound or strike).
Default: 100

e upordown: Barrier Up or Down description. Default: 'U’
e outorin: Barrier In or Out description. Default: ’out’

e barrierlevel: Barrier level. Default: 0.0

Chapter 4: Octave octarisk Classes 51

e rebate: Barrier rebate (payoff in case of a barrier event). Default: 0.0

e averaging_type Asian option averaging type ['rate’’strike’]. Defaults to 'rate’.

e averaging_rule = Asian option underlying distribution of average type ['geomet-
ric’,’arithmetic’]. Defaults to ’geometric’

e averaging_monitoring Asian option average monitoring. Can only be 'continuous’

e theo_delta: Sensitivity to changes in underlying’s price. Calculate by method
calc_greeks.

e theo_gamma: Sensitivity to changes in changes of underlying’s price. Calculate
by method calc_greeks.

e theo_vega: Sensitivity to changes in volatility. Calculate by method calc_greeks.

e theo_theta: Sensitivity to changes in remaining days to maturity. Calculate by
method calc_greeks.

e theo_rho: Sensitivity to changes in risk free rate. Calculate by method
calc_greeks.

e theo_omega: Specified as theo_delta scaled by underlying value over option base
value. Calculate by method calc_greeks.

For illustration see the following example: An American equity Option with 10 years
to maturity, an underlying index, a volatility surface and a discount curve are set up
and the Option value (123.043), volatility spread and the Greeks are calculated by
the Willowtree model and retrieved:

Chapter 4: Octave octarisk Classes 52

disp('Pricing American Option Object (Willowtree)')

c = Curve();

c = c.set('id','IR_EUR', 'nodes"', [730,3650,4380],
'rates_base', [0.0001001034,0.0045624391,0.0062559362] ,
'method_interpolation', 'linear');

v = Surface();

v = v.set('axis_x',3650, 'axis_x_name','TERM', 'axis_y',1.1,
'axis_y_name', 'MONEYNESS');

v = v.set('values_base',0.210360082233);

v = v.set('type', 'IndexVol');

i = Index();

i = i.set('value_base',286.867623322, 'currency','USD');

o = OptionQ);

o = o.set('maturity_date','29-Mar-2026', 'currency', 'USD',

timesteps_size',5, 'willowtree_nodes',30);

= o.set('strike',368.7362, 'multiplier',1, 'sub_Type','0OPT_AM_P');
= o.set('pricing_function_american','Willowtree');
o.calc_value('31-Mar-2016', 'base',i,c,v);
o.calc_greeks('31-Mar-2016"', 'base',i,c,v);
value_base = o.getValue('base')

theo_omega = o.get('theo_omega')

disp('Calibrating volatility spread over yield:')

o = o.set('value_base',100);

o = o.calc_vola_spread('31-Mar-2016',i,c,v);
o.getValue('base')

O O O O

Chapter 4: Octave octarisk Classes

Dependencies of class:

option_asian_levy

option_asian_vorst90

Wl

<P :
P option_barrier

option_binary

yvy

option_bjsten

A

Jpr @Option::calc_greeks option_bs

vy

A

P @Option::calc_value option_lookback

————— P @Option::calc_vola_spread

\A

pricing_option_cpp

m convert_curve_rates

— {119
Ly

@Option::Option ———pp» @Option::calc_value_basket_beisser

interpolate_curve

L P @Option::calc_greeks_basket beisser

Ly

option_willowtree

P @Option::get

timefactor

calibrate_generic

P @Option::set

—_—P
return_checked_input

Chapter 4: Octave octarisk Classes 54

4.6 Cash.help

object
object

= Cash(id) [Octarisk Class]

Cash() [Octarisk Class]

Class for setting up Cash objects.
This class contains all attributes and methods related to the following Cash types:

Cash: Specify riskless cash instruments

In the following, all methods and attributes are explained and a code example is
given.
Methods for Cash object obj:

Cash(id) or Cash(): Constructor of a Cash object. id is optional and specifies id
and name of new object.

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.

obj.calc_value(scenario,scen_number): Extends base value to vector of row size
scen_number and stores vector for given scenario. Cash instruments are per
definition risk free.

obj.getValue(scenario): Return Cash value for given scenario. Method inherited
from Superclass Instrument

Cash.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method]

Attributes of Cash objects:

id: Instrument id. Has to be unique identifier. Default: empty string.
name: Instrument name. Default: empty string.

description: Instrument description. Default: empty string.

value_base: Base value of instrument of type real numeric. Default: 0.0.

currency: Currency of instrument of type string. Default: "EUR’ During instru-
ment valuation and aggregation, FX conversion takes place if corresponding FX
rate is available.

asset_class: Asset class of instrument. Default: 'unknown’
type: Type of instrument, specific for class. Set to ’cash’.
value_stress: Line vector with instrument stress scenario values.

value_mec: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

For illustration see the following example: A THB Cash instrument is being generated
and during value calculation the stress and MC scenario values with 20 resp. 1000
scenarios are derived from the base value:

Chapter 4: Octave octarisk Classes 55

= Cash();

= c.set('id', 'THB_CASH', 'name', 'Cash Position THB');
.set('asset_class', 'cash', 'currency', 'THB');
.set('value_base',346234.1256) ;
.calc_value('stress',20);
.calc_value('2504',1000);

value_stress = c.getValue('stress');

O o0 o0 o0 o0 o0
O o o0 o0 0

Dependencies of class:

@Cash::calc_value

A

@Cash::Cash @Cash::get
—>

P @Cash::set ———Pppt return_checked_input

4.7 Debt.help

object = Debt(id) [Octarisk Class]
object = Debt() [Octarisk Class]
Class for setting up Debt objects. The idea of this class is to model baskets (funds)
of bond instruments. The shocked value is derived from a sensitivity approach based
on Modified duration and convexity. These sensitivities describe the total basket
properties in terms of interest rate sensitivity. The following formula is applied to
calculate the instrument shock:
dP
-—— =-DdY + 0.5 C dY"2
P
If you want to model all underlying bonds directly, use Bond class for underlyings
and Synthetic class for the basket (fund).
This class contains all attributes and methods related to the following Debt types:

e DBT: Standard debt type

In the following, all methods and attributes are explained and a code example is
given.

Chapter 4: Octave octarisk Classes 56

Methods for Debt object obj:

Debt(id) or Debt(): Constructor of a Debt object. id is optional and specifies id
and name of new object.

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.

obj.calc_value(discount_curve,scenario): Calculate instrument shocked value
based on interest rate sensitivity. Modified Duration and Convexity are used to
predict change in value based on absolute shock discount curve at given term.

obj.getValue(scenario): Return Debt value for given scenario. Method inherited
from Superclass Instrument

Debt.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method]

Attributes of Debt objects:

id: Instrument id. Has to be unique identifier. Default: empty string.
name: Instrument name. Default: empty string.

description: Instrument description. Default: empty string.

value_base: Base value of instrument of type real numeric. Default: 0.0.

currency: Currency of instrument of type string. Default: "EUR’ During instru-
ment valuation and aggregation, FX conversion takes place if corresponding FX
rate is available.

asset_class: Asset class of instrument. Default: ’debt’
type: Type of instrument, specific for class. Set to ’debt’.
value_stress: Line vector with instrument stress scenario values.

value_mec: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

discount_curve: Discount curve is used as sensitivity curve to derive absolute
shocks at term given by duration.

term: Term of debt instrument (in years). Equals average maturity of all under-
lying cash flows.

duration: Modified duration of debt instrument.

convexity: Convexity of debt instrument.

For illustration see the following example: Stress values of a debt instrument with
average maturity of underlyings of 8.35 years and given duration and convexity are
calculated based on 100bp parallel down- and upshift scenarios of a given discount
curve. Stress results are [108.5300000000000;91.1969278203125]

Chapter 4: Octave octarisk Classes 57

= Curve();

= c.set('id','IR_EUR', 'nodes', [730,3650,4380], 'rates_base',[0.01,0.02,0.025], 'm
= c.set('rates_stress',[0.00,0.01,0.015;0.02,0.031,0.035], 'method_interpolation
= Debt();

= d.set('duration',8.35, 'convexity',18, 'term',8.35);

= d.calc_value(c, 'stress');

.getValue('base')

d.getValue('stress')

Qa0 00

Dependencies of class:

@Debt::calc_value

@Debt::Debt @Debt::get
—>

P @Debt::set ———Ppt return_checked_input

4.8 Sensitivity.help

object = Sensitivity(id) [Octarisk Class]
object = Sensitivity() [Octarisk Class]
Class for setting up Sensitivity objects. This class contains two different instrument
setups. The first idea of this class is to model an instrument whose shocks are de-
rived from underlying risk factor shocks or idiosyncratic risk (for MC only). The
shocks from these risk factors are then applied to the instrument base value under
the assumption of a Geometric Brownian Motion or Brownian Motion. Basically, all
real assets like Equity or Commodity can be modelled with this class. The combined
shock is a linear combination of all underlying risk factor shocks:
V_shock V_base * exp(Sum_i=1...n [dRF_i * w_i]) (Model: GBM)
V_shock = V_base + (Sum_i=1...n [dRF_i * w_i]) (Model: BM)
with the new shock Value V_shock, base V_base, risk factor shock dRF_i and risk
factor weight w_i.
The second idea is to use this class to specify a polynomial function or taylor series
of underlying instruments, risk factors, curves, surfaces or indizes and derive the
sensitivity value with the following formulas. If Taylor expansion shall be used:

Chapter 4: Octave octarisk Classes 58

V_shock = V_base + al/bl * x1°bl + a2/b2 * x2°b2 + .. + an/bn * xn"bn * am/bm * x
The base value is used only if appropriate flag is set. Otherwise, a polynomial function
can be set up:
V_shock = V_base + al * x1°bl + a2 *x x2"b2 + .. + an * xn"bn * am * xm bmll
with the new shock Value V_shock, base V_base, and prefactors a, exponents b and a
multiplicative combination of cross terms (term with equal cross terms are multiplied
with each other, term with cross terms equal zero are added to the total value) All
combined cross terms and all single terms are finally summed up.
This class contains all attributes and methods related to the following Sensitivity
types:
e EQU: Equity sensitivity type
e RET: Real Estate sensitivity type
e COM: Commodity sensitivity type
e STK: Stock sensitivity type
e ALT: Alternative investments sensitivity type
e SENSI: Taylor series or polynomial equation of underlying objects

which stands for Equity, Real Estate, Commodity, Stock and Alternative Investments.
All sensitivity types assume a geometric brownian motion or brownian motion as
underlying stochastic process.

In the following, all methods and attributes are explained and a code example is
given.

Methods for Sensitivity object obj:

e Sensitivity(id) or Sensitivity(): Constructor of a Sensitivity object. id is optional
and specifies id and name of new object.

e obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

e obj.get(attribute): Getter method. Query the value of specified attribute.

e obj.calc_value(valuation_date, scenario, riskfactor_struct, instrument_struct, in-
dex_struct, curve_struct, surface_struct, [scen_number]): Method for calculation
of sensitivity value. Only structures with used objects need to be set.

e obj.valuate(valuation_date, scenario, instrument_struct, surface_struct,
matrix_struct, curve_struct, index_struct, riskfactor_struct, | para_struct |)
Generic instrument valuation method. All objects required for valuation of
the instrument are taken from provided structures (e.g. curves, riskfactors,
underlying indizes). Method inherited from Superclass Instrument.

e obj.getValue(scenario): Return Sensitivity value for given scenario. Method in-
herited from Superclass Instrument

e Sensitivity.help(format,returnflag): show this message. Format can be [plain
text, html or texinfo]. If empty, defaults to plain text. Returnflag is boolean:
True returns documentation string, false (default) returns empty string. [static
method|

Attributes of Sensitivity objects:

e id: Instrument id. Has to be unique identifier. Default: empty string.

Chapter 4: Octave octarisk Classes 59

e name: Instrument name. Default: empty string.
e description: Instrument description. Default: empty string.
e value_base: Base value of instrument of type real numeric. Default: 0.0.

e currency: Currency of instrument of type string. Default: "TEUR’ During instru-
ment valuation and aggregation, FX conversion takes place if corresponding FX
rate is available.

e asset_class: Asset class of instrument. Default: empty string
e type: Type of instrument, specific for class. Set to ’sensitivity’.
e value_stress: Line vector with instrument stress scenario values.

e value_mc: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

e timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

o riskfactors: Cell with IDs of all underlying risk factors. Default: empy cell.

e sensitivities: Vector with weights of riskfactors of same length and order as risk-
factors cell. Default: empty vector

e idio_vola: Idiosyncratic volatility of sensitivity instrument. Used only if one
riskfactor is set to 'IDIO’. Applies a shock given by a normal distributed random
variable with standard deviation taken from the value of attribute idio_vola and
a mean of zero.

e model: Model specifies the stochastic process. Can be a Geometric Brownian
Notion (GBM) or Brownian Notion (BM). (Default: 'GBM’)

e underlyings: cell array of underlying indizes, curves, surfaces, instruments, risk
factors

e x_coord: vector with x coordinates of underlying (curves, surfaces, cubes only)
e y_coord: vector y coordinate of underlying (surfaces, cubes only)
e z_coord: vector z coordinate of underlying (cubes only)

e shock_type: cell array of shock types for each underlying [value, relative, abso-
lute]

e sensi_prefactor: vector with prefactors (a in a*x"b)

e sensi_exponent: vector with exponents (b in a*x~b)

e div_yield: forecast dividend yield

e div_month: dividend paymend month

e sensi_cross: vector with cross terms [0 = single; 1,2,3, ... link cross terms]

e use_value_base: boolean flag: use value_base for base valuation. Scenario shocks
are added to base value (default: false)

e use_taylor_exp: boolean flag: if true, treat polynomial value as Taylor expan-
sion(default: false)

e cf-dates: Unused: Cash flow dates (Default: [])

o cf values: Unused: Cash flow values (Default: [])

Chapter 4: Octave octarisk Classes 60

For illustration see the following example: An All Country World Index (ACWTI) fund
with base value of 100 USD shall be modelled with both instrument setups (Linear
combination of risk factor shocks and a polynomial (linear) function with two single
terms. Underlying risk factors are the MSCI Emerging Market and MSCI World
Index. The sensitivities to both risk factors are equal to the weights of the subindices
in the ACWI index. Both risk factors are shocked during a stress scenario and the
total shock values for the fund are calculated:

Chapter 4: Octave octarisk Classes 61

fprintf(' doc_instrument: Pricing Sensitivity Instrument (Polynomial Function)'

rl = Riskfactor();

rl = rl.set('id', 'MSCI_WORLD', 'scenario_stress',[20;-10],
'model’','GBM', 'shift_type',[1;1]);

r2 = Riskfactor();

r2 = r2.set('id','MSCI_EM', 'scenario_stress', [10;-20],

'model’, 'GBM', 'shift_type',[1;1]);
riskfactor_struct struct();
riskfactor_struct(1l).id = ril.id;

riskfactor_struct(l).object = ri;
riskfactor_struct(2).id = r2.id;
riskfactor_struct(2).object = r2;

s = Sensitivity();

s s.set('id', 'MSCI_ACWI_ETF', 'sub_type', 'SENSI',
'asset_class', 'Equity', 'value_base', 100,
'underlyings',cellstr(['MSCI_WORLD'; 'MSCI_EM']
'x_coord', [0,0],

'y_coord', [0,0.0],

'z_coord', [0,0],

"shock_type', cellstr(['absolute';'absolute']),

'sensi_prefactor', [0.8,0.2], 'sensi_exponent', [1,1],

'sensi_cross', [0,0], 'use_value_base',true,'use_taylor_exp',false);]]
instrument_struct struct();

instrument_struct(l).id = s.id;

instrument_struct (1) .object = s;

s.calc_value('31-Dec-2016', 'base',riskfactor_struct,instrument_struct,[],[],

.getValue('base')

s.calc_value('31-Dec-2016"',

.getValue('stress')

'UsD! 1

'currency',

b

),

'stress',riskfactor_struct,instrument_struct,[],[

n n n n

fprintf (' doc_instrument:
r1l = Riskfactor();

Pricing Sensitivity Instrument (Riskfactor linear com

rl = rl.set('id', 'MSCI_WORLD', 'scenario_stress', [20;-10],
'model','BM','shift_type',[1;1]1);

r2 = Riskfactor();

r2 = r2.set('id', 'MSCI_EM', 'scenario_stress', [10;-20],

'model’', 'BM', 'shift_type',[1;1]);
riskfactor_struct struct();

riskfactor_struct(1l).id = ril.id;

riskfactor_struct(l).object = ri;

riskfactor_struct(2).id = r2.id;
riskfactor_struct(2).object = r2;

s = Sensitivity(Q;

s s.set('id', 'MSCI_ACWI_ETF', 'sub_type','EQU', 'currency', 'USD',
'asset_class', 'Equity', 'model', 'BM',
'riskfactors',cellstr(['MSCI_WORLD';'MSCI_EM']),
'sensitivities', [0.8,0.2], 'value_base',100.00);

instrument_struct struct();

instrument_struct(l).id = s.id;

instrument_struct(l) .object = s;
s = s.valuate('31-Dec-2016', 'stress',
instrument_struct, [1, [I,

. 1.

riskfactor struct):

Chapter 4: Octave octarisk Classes 62

Stress results are [118;88].

Dependencies of class:

@Sensitivity::calc_value

@Sensitivity::Sensitivity @Sensitivity::get
—>

‘ P @Sensitivity::set —————ppt return_checked_input

4.9 Riskfactor.help

object = Riskfactor(id) [Octarisk Class]
object = Riskfactor() [Octarisk Class]
Class for setting up Riskfactor objects.
The mapping between e.g. curve or index objects and their corresponding risk
factors is automatically done by using regular expressions to match the names.
Riskfactors always have to begin with '"RF_’ followed by the object name. If certain
nodes of curves or surfaces are shocked, the name is followed by an additional
node identifier, e.g. '/RF_IR_.EUR_SWAP_1Y’ for shocking an interest rate curve or
'"RF_VOLA_TR_EUR_1825_3650’ for shocking a certain point on the volatility tenor
/ term surface.
Riskfactors can be either shocked during stresses, where custom absolute or relative
shocks can be defined. During Monte-Carlo scenario generation risk factor shocks are
calculated by applying statistical processes according to specified stochastic model.
The random numbers follow a match of given mean, standard deviation, skewness and
kurtosis according to distributions selected by the Pearson Type I-VII distribution
system.
This class contains all attributes and methods related to the following Riskfactor

types:
e RF_IR: Interest rate risk factor.
e RF_SPREAD: Spread risk factor.
e RF_COM: Commodity risk factor.
e RF_RE: Real estate risk factor.
e RF_EQ: Equity risk factor.
e RF_VOLA: Volatility risk factor.

Chapter 4: Octave octarisk Classes 63

RF_ALT: Alternative investment risk factor.
RF_INFL: Inflation risk factor.
RF_FX: Forex risk factor.

In the following, all methods and attributes are explained and a code example is
given.
Methods for Riskfactor object obj:

Riskfactor(id) or Riskfactor(): Constructor of a Riskfactor object. id is optional
and specifies id and name of new object.

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.

obj.getValue(scenario, abs_flag, sensitivity): Return Riskfactor value according
to scenario type. If optional parameter abs_flag is true returns Riskfactor scenario
values. Therefore static method Riskfactor.get_abs_values will be called.

Riskfactor.help(format,returnflag): show this message. Format can be [plain
text, html or texinfo]. If empty, defaults to plain text. Returnflag is boolean:
True returns documentation string, false (default) returns empty string. [static
method]

Riskfactor.get_abs_values(model, scen_deltavec, value_base, sensitivity): Calcu-
late absolute scenario value for given base value, sensitivity, model and shock.
[static method]

Riskfactor.get_basis(dcc_string): Return basis integer value for given day count
convention string.

Attributes of Riskfactor objects:

id: Riskfactor id. Has to be unique identifier. Default: empty string.
name: Riskfactor name. Default: empty string.
description: Riskfactor description. Default: empty string.

type: Riskfactor type. Can be [RF_IR, RF_.SPREAD, RF_COM, RF_RE,
RF_EQ, RF_VOLA, RF_ALT, RF_INFL or RF_FX]

model: Stochastic risk factor model. Can be [Geometric Brownian Motion
(GBM), Brownian Motioan (BM), Black-Karasinsky Model (BKM), Shifted Log-
Normal (SLN), Ornstein-Uhlenbeck (OU), Square-Root Diffusion (SRD)]. De-
fault: empty string.

mean: Annualized targeted marginal mean (drift) of risk factor. Default: 0.0
std: Annualized targeted marginal standard deviation of risk factor. Default: 0.0
skew: Targeted marginal skewness of risk factor. Default: 0.0

kurt: Targeted marginal kurtosis of risk factor. Default: 0.0

value_base: Base value of risk factor (required for mean reverting stochastic
models). Default: 0.0

mr_level: Mean reversion level. Default: 0.0

mr_rate: Mean reversion parameter. Default: 0.0

Chapter 4: Octave octarisk Classes 64

e node: Risk factor term value in first dimension (in days). For curves equals term
in days at x-axis (term). Default: 0.0

e node2: Risk factor term value in second dimension. For interest rate surfaces
equals term in days at y-axis (tenor or term). For index surfaces equals money-
ness. Default: 0.0

e node3: Risk factor term value in third dimension. For volatility cubes equals
moneyness at z-axis. Default: 0.0

e sin_level: Shift parameter (shift level) of shifted log-normal distribution. Default:
0.0

e scenario_mc: Vector with risk factor shock values. MC rates for several MC
timesteps are stored in layers.

e scenario_stress: Vector with risk factor shock values.

e timestep_mc: String Cell array with MC timesteps. Automatically appended if
values for new timesteps are set.

e shocktype_mc: Specify how to apply risk factor shocks in Monte Carlo scenarios.
Can be [absolute, relative, sln_relative]. Automatically set by scripts. Default:
absolute

e shift_type: Specify a vector specifying stress risk factor shift type . Can be either
0 (absolute) or 1 (relative) shift.

For illustration see the following example: A swap risk factor modelled by a shifted
log-normal model at the three year node is set up and shifted in three stress scenarios
(absolute up- and downshift, relative downshift):

disp('Setting up Swap(3650) risk factor')

r = Riskfactor();

r = r.set('id', 'RF_EUR-SWAP_3Y', 'name', 'RF_EUR-SWAP_3Y',
'scenario_stress',[0.02;-0.01;0.8],
'type', 'RF_IR', 'model','SLN','shift_type',[0;0;1],
'mean',0.0,'std',0.117, 'skew',0.0, 'kurt', 3,
'node',1095, 'sln_level',0.03)

Chapter 4: Octave octarisk Classes 65

Dependencies of class:

P @Riskfactor::get

@Riskfactor::getValue

_>
@Riskfactor::Riskfactor

_>
@Riskfactor::isProp

P @Riskfactor::set ————ppt return_checked_input

4.10 Index.help

object = Index(id) [Octarisk Class]
object = Index() [Octarisk Class]
Class for setting up Index objects.
Index class is used for specifying asset indizes, exchange rates and consumer price
indizes. Indizes serve as underlyings for e.g. Options or Forwards, are used to set up
forex rates or CPI indizes for inflation linked products. Indizes can be shocked with
risk factors (e.g. risk factor types RF_EQ or RF_FX) or in MC scenarios.
This class contains all attributes and methods related to the following Index types:
e EQUITY INDEX
e BOND INDEX
e VOLATILITY INDEX
e COMMODITY INDEX
e REAL ESTATE INDEX
e EXCHANGE RATE
e CPI (Consumer Price index)
e AGGREGATED INDEX (consists of underlying indexes)
In the following, all methods and attributes are explained and a code example is
given.
Methods for Index object obj:

e Index(id) or Index(): Constructor of a Index object. id is optional and specifies
id and name of new object.

Chapter 4: Octave octarisk Classes 66

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.
obj.getValue(scenario): Return Index value according to scenario type.

Index.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method|

Index.get_basis(dcc_string): Return basis integer value for given day count con-
vention string. [static method]

Attributes of Index objects:

id: Index id. Has to be unique identifier. Default: empty string.
name: Index name. Default: empty string.
description: Index description. Default: empty string.

type: Index type. Can be [EQUITY INDEX, BOND INDEX, VOLATILITY
INDEX, COMMODITY INDEX, REAL ESTATE INDEX, EXCHANGE RATE,
CPI]. Default: empty string.

value_base: Base value of index. Default: 1.0
currency: Index currency. Default: "TEUR’

index_function: Type Aggregated Index only: specifies how to aggregated in-
dexes, which are specified in attribute increments. Can be [sum, product, divide,
factor]. [sum, product, divide] specifies mathematical operation applied on all
curve increments. [factor] allows only one increment and uses curve_parameter
for multiplication. Default: 'sum’

index_parameter: Type Aggregated indexes only: used as multiplication param-
eter for factor curve_function.

increments: Type Aggregated indexes only: List of IDs of all underlying indexes.
Use index_function to specify how to aggregated indexes.

scenario_mc: Vector with Monte Carlo index values. \n
scenario_stress: Vector with Stress index values.

timestep_mc: String Cell array with MC timesteps. Automatically appended if
values for new timesteps are set.

shift_type: (unused) Specify a vector specifying stress index shift type . Can be
either 0 (absolute) or 1 (relative) shift.

For illustration see the following example:

disp('Setting up an equity index and Exchange Rate')

i = Index();

i =1i.set('id','MSCIWORLD', 'value_base',1000,
'scenario_stress', [2000;1333;800], 'currency','USD');

fx = Index();

fx = fx.set('id','FX_EURUSD', 'value_base',1.1,
'scenario_stress',[1.2;1.18;1.23]);

Chapter 4: Octave octarisk Classes 67

Dependencies of class:

P @Index::get

@Index::getValue

_>
@Index::Index

—>

@Index::isProp

P @Index::set ———Pppt return_checked_input

4.11 Synthetic.help

object = Synthetic(id) [Octarisk Class]

object = Synthetic() [Octarisk Class]
Class for setting up Synthetic objects. A Synthetic instrument is a linear combination
of underlying instruments. The following Synthetic types are introduced:

e SYNTH: Synthetic instrument with underlyings. The Synthetic price is based
on the linear combination of underlying instrument’s prices.

e Basket: The same as type SYNTH, but additional attributes for specifying un-
derlying volatility surface and volatility types are introduced to enable basket
option valuation.

In the following, all methods and attributes are explained and a code example is
given.
Methods for Synthetic object obj:
e Synthetic(id) or Synthetic(): Constructor of a Synthetic object. id is optional
and specifies id and name of new object.

e obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

e obj.get(attribute): Getter method. Query the value of specified attribute.

e obj.calc_value(valuation_date,scenario, instrument_struct, index_struct) Calcu-
late the value of Synthetic instruments based on valuation date, scenario type,

Chapter 4: Octave octarisk Classes 68

underlying instruments and FX rates. The provided structures have to contain
the referenced underlying instrument objects and FX rates.

obj.getValue(scenario): Return Synthetic value for given scenario. Method in-
herited from Superclass Instrument

Synthetic.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method]

Attributes of Synthetic objects:

id: Instrument id. Has to be unique identifier. (Default: empty string)
name: Instrument name. (Default: empty string)

description: Instrument description. (Default: empty string)

value_base: Base value of instrument of type real numeric. (Default: 0.0)

currency: Currency of instrument of type string. (Default: "EUR’) During in-
strument valuation and aggregation, FX conversion takes place if corresponding
FX rate is available.

asset_class: Asset class of instrument. (Default: 'derivative’)
type: Type of instrument, specific for class. Set to ’Synthetic’.
value_stress: Line vector with instrument stress scenario values.

value_mc: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

day_count_convention: Day count convention of curve. See ’help get_basis’ for
details (Default: ’act/365)

compounding_type: Compounding type. Can be continuous, discrete or simple.
(Default: ’cont’)

compounding_freq: Compounding frequency used for discrete compounding. Can
be [daily, weekly, monthly, quarterly, semi-annual, annual]. (Default: ’annual’)

instruments: Underlying instrument identifiers (Cellstring)
weights: Underlying instruments weights (Numeric vector)
discount_curve: Discount curve (Default: empty string)

instr_vol_surfaces: Required for Options on Baskets only: Underlying instru-
ments volatility surface identifiers (Cellstring)

correlation_matrix: Required for Options on Baskets only: Correlation matrix
object of Basket underlyings (Default: empty string)

basket_vola_type: Required for Options on Baskets only: Approximation method
for basket volatility calculation [Levy, VCV, Beisser| (Default: 'Levy’)

For illustration see the following example: A fund modelled as synthetic instrument
with two underlying indizes (MSCI World and Euro Stoxx 50) is set up and the
synthetic value (1909.090909) is calculated and retrieved:

Chapter 4: Octave octarisk Classes 69

fprintf ('Pricing Synthetic Instrument');

s = Synthetic();

instrument_cell = cell;

instrument_cell(1) = 'EURO_STOXX_50';

instrument_cell(2) = 'MSCIWORLD';

s = s.set('id', 'TestSynthetic','instruments',instrument_cell);
s = s.set('weights',[1,1], 'currency','EUR');

il = Index();
il = il.set('id','EURO_STOXX_50', 'value_base',1000, 'scenario_stress',2000) ;[
i2 = Index();

i2 = i2.set('id', 'MSCIWORLD', 'value_base',1000);

i2 = i2.set('scenario_stress',2000, 'currency','USD');

fx = Index();

fx = fx.set('id','FX_EURUSD', 'value_base',1.1, 'scenario_stress',1.2);l}
instrument_struct = struct();

instrument_struct(1l).id = il.id;

instrument_struct(l) .object = il;

instrument_struct(2).id = i2.id;

instrument_struct(2).object = i2;

index_struct = struct();

index_struct(1l).id = fx.id;

index_struct(l) .object = fx;

valuation_date = datenum('31-Mar-2016');

s = s.calc_value(valuation_date, 'base',instrument_struct,index_struct) ;i
s.getValue('base')

Dependencies of class:

@Synthetic::calc_value ———Jppt get FX_rate

@Synthetic::Synthetic @Synthetic::get
—>

‘ P @Synthetic::set ————Ppt return_checked_input

Chapter 4: Octave octarisk Classes 70

4.12 Surface.help

object
object

= Surface(id) [Octarisk Class]

Surface() [Octarisk Class]

Class for setting up Surface objects.

Surface class is used for specifying IndexVol, IRVol, Stochastic, Prepayment or
Dummy Surfaces. A Surface (or Cube) stores two- or three-dimensional values (e.g.
term, tenor and/or moneyness dependent volatility values. Surfaces can be shocked
with risk factors (e.g. risk factor types RF_VOLA_EQ or RF_VOLA_IR) at any
coordinates of the multi-dimensional space in MC or stress scenarios.

This class contains all attributes and methods related to the following Surface types:

IndexVol two-dimensional surface (term vs. moneyness) for setting up Equity
volatility values.

IRVol two- or three-dimensional surface (term vs. moneyness) / cube (term vs.
tenor vs. moneyness) for setting up Interest rate volatility values.

Stochastic one- or two-dimensional curve / surface to store scenario dependent
values (e.g. stochastic cash flow surface with values dependent on date and
quantile)

Prepayment two-dimensional prepayment surface with prepayment factors de-
pendent on e.g. interest rate shock and coupon rates.

Dummy Dummy curve for various purposes.

In the following, all methods and attributes are explained and a code example is
given.
Methods for Surface object obj:

Surface(id) or Surface(): Constructor of a Surface object. id is optional and
specifies id and name of new object.

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.

obj.getValue(scenario, x, y, z): Return Surface value at given coordinates ac-
cording to scenario type. Interpolate surface base value and risk factor shock
(only possible after call of method apply_rf-shocks)

Surface.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method]

obj.apply_rf_shocks(riskfactor_struct): Apply risk factor shocks to Surface base
values and store the shocks for later use in attribute shock_struct. These shocks
are then applied to the surface base value with method getValue. The risk factors
are taken from the provided structure according to the surface risk factor IDs
given by the attribute riskfactors.

Surface.interpolate(x, [y, [z]]): Return Surface base value at given coordinates.

Attributes of Surface objects:

id: Surface id. Has to be unique identifier. Default: empty string.
name: Surface name. Default: empty string.

Chapter 4: Octave octarisk Classes 71

e description: Surface description. Default: empty string.

e type: Surface type. Can be [Index, IR, Stochastic, Prepayment, Dummy Sur-
faces|. Default: Index.

e day_count_convention: Day count convention of curve. See ’help get_basis’ for
details (Default: ’act/365’)

e compounding_type: Compounding type. Can be continuous, discrete or simple.
(Default: ’cont’)

e method_interpolation: Interpolation method. Can be linear or nearest. Default:
linear.

e compounding-freq: Compounding frequency used for discrete compounding. Can
be [daily, weekly, monthly, quarterly, semi-annual, annual]. (Default: ’annual’)

e values_base: Base values of Surface.

e moneyness_type: Moneyness type. Can be K/S for relative moneyness or K-S
for absolute moneyness. (Default: 'K/S’).

e shock_struct: Structure containing all risk factor shock specifications (e.g. model,
risk factor coordinates, shock values and shift type)

e riskfactors: Cell specifying all risk factor IDs
e axis_x: x-axis coordinates
e axis_y: y-axis coordinates
e axis_z: z-axis coordinates
e axis_Xx_name: X-axis name
e axis_y_name: y-axis name
e axis_z_name: z-axis name

For illustration see the following example:

disp('Setting up an Index Surface and Risk factor, apply shocks and retrieve valu
r1l = Riskfactor();

rl = rl.set('id','V1l', 'scenario_stress',[1.0;-0.5],
'model','GBM', 'shift_type', [1;1],

'node',730, 'node2',1);

riskfactor_struct(l).id = r1l.id;
riskfactor_struct(l).object = ril;

v = Surface();

v = v.set('id','V1l', 'axis_x', [365,3650],
'axis_x_name','TERM', 'axis_y',[0.9,1.0,1.1],
'axis_y_name', 'MONEYNESS');

v = v.set('values_base',[0.25,0.36;0.22,0.32;0.26,0.34]);
riskfactor_cell = cell;

riskfactor_cell(1) = 'V1';

v = v.set('type', 'INDEX', 'riskfactors',riskfactor_cell);
v = v.apply_rf_shocks(riskfactor_struct);

base_value = v.interpolate(365,0.9)

base_value .getValue('base',365,0.9)

stress_value = v.getValue('stress',365,0.9)

I
<

Chapter 4: Octave octarisk Classes 72

Dependencies of class:

P @Surface::apply_rf_shocks

@Surface::apply_stress_shocks

A

‘ P @Surface::get ’—V interpolate_cubestruct

@Surface::Surface @Surface::getValue ————Jppt interpolate_surfacestruct
—>

\—> @Surface::interpolate ——— Pt interpolate_curve

P @Surface::isProp

P @Surface:iset —————Ppt return_checked_input

4.13 Swaption.help

object = Swaption(id) [Octarisk Class]

object = Swaption() [Octarisk Class]
Class for setting up Swaption objects. Possible underlyings are fixed and floating
swap legs. Therefore the following Swaption types are introduced:

e SWAPT_REC: European Receiver Swaption priced by Black-Scholes or Bachelier
normal model.

e SWAPT_PAY: European Payer Swaption priced by Black-Scholes or Bachelier
normal model.

In the following, all methods and attributes are explained and a code example is
given.
Methods for Swaption object obj:

e Swaption(id) or Swaption(): Constructor of a Swaption object. id is optional
and specifies id and name of new object.

Chapter 4: Octave octarisk Classes 73

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.

obj.calc_value(valuation_date,scenario, discount_curve, volatility_surface, under-
lying_fixed_leg, underlying_floating_leg) Calculate the value of Swaptions based
on valuation date, scenario type, discount curve, underlying instruments and
volatility surface. The pricing model is chosen based on Swaption type and in-
strument model attributes.

obj.calc_greeks(valuation_date,scenario, discount_curve, volatility_surface,
underlying_fixed_leg, underlying_floating_leg) Calculate numerical sensitivities
(the Greeks) for the given Swaption instrument.

obj.calc_vola_spread(valuation_date,scenario, discount_curve, volatility_surface,
underlying_fixed_leg, underlying_floating_leg) Calibrate volatility spread in order
to match the Swaption price with the market price. The volatility spread will be
used for further pricing.

obj.getValue(scenario): Return Swaption value for given scenario. Method in-
herited from Superclass Instrument

Swaption.help(format,returnflag): show this message. Format can be [plain text,

html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method]

Attributes of Swaption objects:

id: Instrument id. Has to be unique identifier. (Default: empty string)
name: Instrument name. (Default: empty string)

description: Instrument description. (Default: empty string)

value_base: Base value of instrument of type real numeric. (Default: 0.0)

currency: Currency of instrument of type string. (Default: ’EUR’) During in-
strument valuation and aggregation, FX conversion takes place if corresponding
FX rate is available.

asset_class: Asset class of instrument. (Default: 'derivative’)
type: Type of instrument, specific for class. Set to ’Swaption’.
value_stress: Line vector with instrument stress scenario values.

value_mec: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

maturity_date: Maturity date of Swaption (date in format DD-MMM-YYYY)
effective_date: Effective date of Swaption (date in format DD-MMM-YYYY)

day_count_convention: Day count convention of curve. See ’help get_basis’ for
details (Default: ’act/365)

compounding_type: Compounding type. Can be continuous, discrete or simple.
(Default: ’cont’)

compounding_freq: Compounding frequency used for discrete compounding. Can
be [daily, weekly, monthly, quarterly, semi-annual, annual]. (Default: ’annual’)

Chapter 4: Octave octarisk Classes 74

e spread: Interest rate spread used in calculating risk free interest rate. Default:
0.0;

e discount_curve: ID of discount curve. Default: empty string

e underlying: ID of underlying curve object for extracting forward rates. Default:
empty string

e vola_surface: ID of volatility surface. Default: empty string
e vola_sensi: Sensitivity scaling factor for volatility. Default: 1
e strike: Strike rate of Swaption. Default: 100

e spot: Spot rate of underlying reference curve. Only used, if underlying is risk
factor.

e multiplier: Multiplier of Swaption. Resulting Swaption price is scales by this
multiplier. Default: 100

e model: Pricing model for Swaptions. Can be ['black’,’'normal’]. Default: 'black’
e tenor: Tenor of swaption contract.
e no_payments: Number of payments of swaption contract.

e use_underlyings: Boolean flag: if true, underlying swap values of fixed and float-
ing legs are used for calculation of swaption spot price spot price (Default: ’false’)

e und_fixed_leg: ID of underlying fixed swap leg. Object has to be a Bond().
Default: empty string

e und_floating_leg: ID of underlying floating swap leg. Object has to be a Bond().
Default: empty string

e theo_delta: Sensitivity to changes in underlying’s price. Calculate by method
calc_greeks.

e theo_gamma: Sensitivity to changes in changes of underlying’s price. Calculate
by method calc_greeks.

e theo_vega: Sensitivity to changes in volatility. Calculate by method calc_greeks.

e theo_theta: Sensitivity to changes in remaining days to maturity. Calculate by
method calc_greeks.

e theo_rho: Sensitivity to changes in risk free rate. Calculate by method
calc_greeks.

e theo_omega: Specified as theo_delta scaled by underlying value over Swaption
base value. Calculate by method calc_greeks.

For illustration see the following example: A normal payer swaption with maturity in
20 years with underlying swaps starting in 20 years for 10 years, a volatility surface
and a discount curve are priced. The resulting Swaption value (642.6867193851) is
retrieved:

Chapter 4: Octave octarisk Classes 75

disp('Pricing Payer Swaption with underlyings (Normal Model)')
r = Curve();

r = r.set('id', 'EUR-SWAP-NOFLOOR', 'nodes’,
[7300,7665,8030,8395,8760,9125,9490,9855,10220,10585,10900],
'rates_base', [0.02,0.01,0.0075,0.005,0.0025,-0.001,
-0.002,-0.003,-0.005,-0.0075,-0.01],

'method_interpolation', 'linear');

fix = Bond();

fix = fix.set('Name', 'SWAP_FIXED','coupon_rate',0.045,
'value_base', 100, 'coupon_generation_method', 'forward',
'sub_type', 'SWAP_FIXED');

fix = fix.set('maturity_date','24-Mar-2046', 'notional',100,
'compounding_type', 'simple’', 'issue_date', '26-Mar-2036"',
'term',365, 'notional_at_end',0);

fix = fix.rollout('base','31-Mar-2016"');

fix = fix.rollout('stress','31-Mar-2016"');

fix = fix.calc_value('31-Mar-2016', 'base’',r);

fix = fix.calc_value('31-Mar-2016', 'stress',r);

float = Bond();

float = float.set('Name','SWAP_FLOAT', 'coupon_rate',0.00,'value_base',100, ...J|
'coupon_generation_method', 'forward', 'last_reset_rate',-0.000,
'sub_type', 'SWAP_FLOATING', 'spread',0.00);

float = float.set('maturity_date','24-Mar-2046', 'notional',100,
'compounding_type', 'simple’', 'issue_date', '26-Mar-2036"',
'term',365, 'notional_at_end',0);

float = float.rollout('base',r,'31-Mar-2016"');

float = float.rollout('stress',r,'31-Mar-2016');
float = float.calc_value('30-Sep-2016', 'base',r);
float = float.calc_value('30-Sep-2016', 'stress',r);

v = Surface();

v v.set('axis_x',30, 'axis_x_name', 'TENOR',
'axis_y',45,'axis_y_name','TERM', 'axis_z',1.0,'axis_z_name', 'MONEYNESS');]}
v = v.set('values_base',0.376563388);

v = v.set('type', 'IRVol');

s = SwaptionQ);

s = s.set('maturity_date',‘26—Mar-2036',‘effective_date‘,'31-Mar—2016');|

s = s.set('strike',0.045, 'multiplier',1, 'sub_type', 'SWAPT_PAY', ...Jj
'model', 'normal', 'tenor',10);

s = s.set('und_fixed_leg','SWAP_FIXED', 'und_floating_leg', 'SWAP_FLOAT', ...}

'use_underlyings',true);
s = s.calc_value('31-Mar-2016"', 'base’',r,v,fix,float);
s.getValue('base')

Chapter 4: Octave octarisk Classes 76

Dependencies of class:

<
——P»t swaption_bachelier
_>
< .
Pt swaption_black76
_>
P . .
swaption_underlyings
— P>
P>
P @Swaption::calc_value timefactor
————————Pp» @Swaption::calc_greeks convert_curve_rates
@Swaption::Swaption ——pp» @Swaption::calc_vola_spread discount_factor
P
. >
P @Swaption::get L—P» get forward_rate
P>
<y
L— P interpolate_curve
—>
P @Swaption::set L—————Ppt calibrate_generic

Pt return_checked_input

4.14 Stochastic.help

object = Stochastic(id) [Octarisk Class]

Chapter 4: Octave octarisk Classes 77

object =

Stochastic() [Octarisk Class]

Class for setting up Stochastic objects. A Stochastic instrument uses a risk factor with
random variables (either uniform, normal or t-distributed) to draw values from a 1D
Surface. The surface has exactly one value per given quantile [0,1]. This instrument
type can be used to pre-calculate values in another risk system for a given risk factor
distribution.

STOCHASTIC: Stochastic instrument type is the default value.

In the following, all methods and attributes are explained and a code example is
given.
Methods for Stochastic object obj:

Stochastic(id) or Stochastic(): Constructor of a Stochastic object. id is optional
and specifies id and name of new object.

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.

obj.calc_value(valuation_date,scenario, riskfactor, surface) Calculate the value of
Stochastic instruments. Quantile values from a 1-dimensional surface are drawn
based on (transformed) risk factor shocks.

obj.getValue(scenario): Return Stochastic value for given scenario. Method in-
herited from Superclass Instrument

Stochastic.help(format,returnflag): show this message. Format can be [plain
text, html or texinfo]. If empty, defaults to plain text. Returnflag is boolean:
True returns documentation string, false (default) returns empty string. [static
method]

Attributes of Stochastic objects:

id: Instrument id. Has to be unique identifier. (Default: empty string)
name: Instrument name. (Default: empty string)

description: Instrument description. (Default: empty string)

value_base: Base value of instrument of type real numeric. (Default: 0.0)

currency: Currency of instrument of type string. (Default: ’EUR’) During in-
strument valuation and aggregation, FX conversion takes place if corresponding
FX rate is available.

asset_class: Asset class of instrument. (Default: ’stochastic’)
type: Type of instrument, specific for class. Set to ’Stochastic’.
value_stress: Line vector with instrument stress scenario values.

value_mec: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

quantile_base: Base quantile of stochastic curve. (Default: 0.5)

stochastic_riskfactor: underlying risk factor objects. Shocks are transformed
according to stochastic_rf_type

Chapter 4: Octave octarisk Classes 78

For
Quantile values are given by a 1-dim volatility surface. The resulting Stress value
(195;100;105]) is retrieved:

stochastic_curve: underlying 1-dim surface with values per quantile.

stochastic_rf_type: Risk factor transformation. Type can be [nor-
mal’,’t’,’uniform’] (Default: 'normal’)

t_degree_freedom: degrees of freedom for t distribution (Default: 120)

illustration see the following example: A stochastic value object is generated.

disp('Pricing Pricing Stochastic Value Object')

r = Riskfactor();

r = r.set('value_base',0.5, 'scenario_stress',[0.3;0.50;0.7], 'model’', 'BM');ll
value_x = 0;

value_quantile = [0.1,0.5,0.9];

value_matrix = [90;100;110];

v = Surface();

v = v.set('axis_x',value_x, 'axis_x_name', 'DATE',

'axis_y',value_quantile, 'axis_y_name', 'QUANTILE');

v = v.set('values_base',value_matrix);

v = v.set('type', 'STOCHASTIC');
s = Stochastic();
s = s.set('sub_type', 'STOCHASTIC', 'stochastic_rf_type','uniform', ...|J]

't_degree_freedom',10);

s = s.calc_value('31-Mar-2016', 'base',r,v);

s = s.calc_value('31-Mar-2016"', 'stress',r,v);
stress_value = s.getValue('stress')

Dependencies of class:

@Stochastic::calc_value

@Stochastic::Stochastic @Stochastic::get

—>

‘ P @Stochastic::set ———Ppt return_checked_input

4.15 CapFloor.help

object

CapFloor(id) [Octarisk Class]

Chapter 4: Octave octarisk Classes 79

object

= CapFloor() [Octarisk Class]

Class for setting up CapFloor objects. Plain vanilla caps and floors (consisting of
caplet and floorlets) can be based on interest rates or inflation rates. Cash flows are
generated according to different models (Black, Normal, Analytic) and subsequently
discounted to calculate the CapFloor value.

In

CAP: Plain Vanilla interest rate cap. Valuation model either
[’black’, 'normal’,’analytic’|
FLOOR: Plain Vanilla interest rate floor. Valuation model either
['black’,’normal’,’analytic’]
CAP_CMS: CMS interest rate cap. Valuation model either
['black’,’normal’,’analytic’]
FLOOR_CMS: CMS interest rate floor. Valuation model either

[’black’, normal’,’analytic’|

CAP_INFL: Cap on inflation expectation rates (derived from inflation index val-
ues). Analytical model only (cash flow value based on difference of inflation rate
and strike rate)

FLOOR-INFL: Floor on inflation rates (derived from inflation index values).
Analytical model only (cash flow value based on difference of inflation rate and
strike rate)

the following, all methods and attributes are explained and a code example is

given.
Methods for CapFloor object obj:

CapFloor(id) or CapFloor(): Constructor of a CapFloor object. id is optional
and specifies id and name of new object.

obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

obj.get(attribute): Getter method. Query the value of specified attribute.

obj.calc_value(valuation_date,scenario, discount_curve): Calculate the net
present value of cash flows of Caps and Floors.

obj.rollout(valuation_date,scenario, reference_curve, vola_surface): used for
(CMS) Caps and Floors

obj.rollout(valuation_date,scenario, inflation_exp_rates, historical_inflation, con-
sumer_price_index): used for Inflation Caps and Floors Cash flow rollout for
(Inflation) Caps and Floors.

obj.calc_sensitivity (valuation_date,scenario, reference_curve, vola_surface,
discount_curve) Calculate numerical sensitivities (durations, vega, theta) for
the given CapFloor instrument.

obj.calc_vola_spread(valuation_date,scenario, discount_curve, volatility_surface)
Calibrate volatility spread in order to match the CapFloor price with the market
price. The volatility spread will be used for further pricing.

obj.getValue(scenario): Return CapFloor value for given scenario. Method in-
herited from Superclass Instrument

Chapter 4: Octave octarisk Classes 80

CapFloor.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method|

Attributes of CapFloor objects:

id: Instrument id. Has to be unique identifier. (Default: empty string)
name: Instrument name. (Default: empty string)

description: Instrument description. (Default: empty string)

value_base: Base value of instrument of type real numeric. (Default: 0.0)

currency: Currency of instrument of type string. (Default: ’EUR’) During in-
strument valuation and aggregation, FX conversion takes place if corresponding
FX rate is available.

asset_class: Asset class of instrument. (Default: 'derivative’)
type: Type of instrument, specific for class. Set to ’CapFloor’.
value_stress: Line vector with instrument stress scenario values.

value_me: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

model: Valuation model for (CMS) Caps and Floors can be either
['black’,’normal’’analytic’]. Inflation Caps and Floors are valuated by analytical
model only.

For illustration see the following example: A 2 year Cap starting in 3 years is priced
with Black model. The resulting Cap value (137.0063959386) and volatility spread
(-0.0256826614604929)is retrieved:

Chapter 4: Octave octarisk Classes 81

disp('Pricing Cap Object with Black Model')

cap = CapFloor();

cap = cap.set('id','TEST_CAP', 'name','TEST_CAP','issue_date','30-Dec-2018', ...|J
'maturity_date', '29-Dec-2020', 'compounding_type','simple');

cap = cap.set('term',365, 'term_unit', 'days', 'notional', 10000,
'coupon_generation_method', 'forward', 'notional_at_start',O,
'notional_at_end',0);

cap = cap.set('strike',0.005, 'model', 'Black', 'last_reset_rate',0.0, ...[J]
'day_count_convention', 'act/365', 'sub_type','CAP');

c = Curve();

¢ = c.set('id','IR_EUR', 'nodes', [30,1095,1460], 'rates_base',[0.01,0.01,0.01],
'method_interpolation','linear');

v = Surface();

v = v.set('axis_x',365, 'axis_x_name', 'TENOR', 'axis_y',90,
'axis_y_name','TERM', 'axis_z',1.0,'axis_z_name', 'MONEYNESS');

v = v.set('values_base',0.8);

v = v.set('type', 'IRVol');

cap = cap.rollout('31-Dec-2015', 'base',c,v);

cap = cap.calc_value('31-Dec-2015', 'base’',c);

base_value = cap.getValue('base')

cap = cap.set('value_base',135.000);

cap = cap.calc_vola_spread('31-Dec-2015',c,Vv);

cap = cap.rollout('31-Dec-2015', 'base',c,v);

cap = cap.calc_value('31-Dec-2015', 'base’',c);

vola_spread = cap.vola_spread

Chapter 4: Octave octarisk Classes 82

Dependencies of class:

P @CapFloor::calc_value
— P

|—>

@CapFloor::calc_sensitivities

pricing_npv

—>

rollout_structured_cashflows

—>

@CapFloor::rollout

@CapFloor::CapFloor ——————Jpp» @CapFloor::get

P @CapFloor::getCF

\J

@CapFloor::calc_vola_spread —————Jppt calibrate_generic

P @CapFloor::set ———————ppt return_checked_input

4.16 Bond.help

object = Bond(id) [Octarisk Class]
object = Bond() [Octarisk Class]
Class for setting up various Bond objects. Cash flows are generated specific for each
Bond sub type and subsequently discounted to calculate the Bond value. All bonds
can have embedded options (Option pricing according to Hull-White model).
e FRB: Fixed Rate Bond

e FRN: Floating Rate Note: Calculate CF Values based on forward rates of a given
reference curve.

e ZCB: Zero Coupon Bond
e ILB: Inflation Linked Bond
e CDS: Credit Default Swaps

e CASHFLOW: Cash flow instruments. Custom cash flow dates and values are
discounted.

e SWAP_FIXED: Swap fixed leg

Chapter 4: Octave octarisk Classes 83

e SWAP_FLOATING: Swap floating leg

e FRN_CMS_SPECIAL: Special type floating rate notes (capitalized, average, min,
max) based on CMS rates

e CMS_FLOATING: Floating leg based on CMS rates
e FRA: Forward Rate Agreement
e FVA: Forward Volatility Agreement

e FRN_FWD_SPECIAL: Averaging FRN: Average forward or historical rates of
cms_sliding period

e STOCHASTICCEF: Stochastic cash flow instrument (cash flows values are derived
from an empirical cash flow distribution)

In the following, all methods and attributes are explained and a code example is
given.
Methods for Bond object obj:

e Bond(id) or Bond(): Constructor of a Bond object. id is optional and specifies
id and name of new object.

e obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

e obj.get(attribute): Getter method. Query the value of specified attribute.
e obj.calc_value(valuation_date,scenario, discount_curve)

e obj.calc_value(valuation_date,scenario, discount_curve, call_schedule,
put_schedule): Calculate the net present value of cash flows of Bonds (including
pricing of embedded options)

e obj.rollout(scenario, valuation_date): used for FRB and CASHFLOW instru-
ments

e obj.rollout(scenario, valuation_date, reference_curve, vola_surface): used for

CMS_FLOATING or FRN_SPECIAL

e obj.rollout(scenario, reference_curve, valuation_date, vola_surface): used for
FRN, FRA, FVA, SWAP_FLOATING

e obj.rollout(scenario,valuation_date, psa_curve, psa_factor_surface,
ir_shock_curve): used for FAB with prepayments

e obj.rollout(scenario,valuation_date, inflation_expectation_curve, historical_rates,
consumer_price_index): used for ILB

e obj.rollout(scenario,valuation_date, riskfactor, cashflow_surface): used for
Stochastic CF instruments

e obj.rollout(scenario,valuation_date, hazard_curve, reference_asset,reference_curve):|j
used for CDS Cash flow rollout for Bonds

e obj.calc_sensitivities(valuation_date,discount_curve, reference_curve) Calculate
analytical and numerical sensitivities for the given Bond instrument.

e obj.calc_key_rates(valuation_date,discount_curve) Calculate key rate sensitivities
for the given Bond instrument.

e obj.calc_spread_over_yield(valuation_date,scenario, discount_curve) or

Chapter 4: Octave octarisk Classes 84

e obj.calc_spread_over_yield(valuation_date,scenario, discount_curve,
call_schedule, put_schedule) Calibrate spread over yield in order to match the
Bond price with the market price. The interest rate spread will be used for
further pricing.

e obj.calc_yield_to_mat(valuation_date): Calculate yield to maturity for given cash
flow structure.

e obj.getValue(scenario): Return Bond value for given scenario. Method inherited
from Superclass Instrument

e Bond.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method]

Attributes of Bond objects:
e id: Instrument id. Has to be unique identifier. (Default: empty string)
e name: Instrument name. (Default: empty string)
e description: Instrument description. (Default: empty string)
e value_base: Base value of instrument of type real numeric. (Default: 0.0)

e currency: Currency of instrument of type string. (Default: ’EUR’) During in-
strument valuation and aggregation, FX conversion takes place if corresponding
FX rate is available.

e asset_class: Asset class of instrument. (Default: ’derivative’)
e type: Type of instrument, specific for class. Set to 'Bond’.
e value_stress: Line vector with instrument stress scenario values.

e value_mc: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

e timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

For illustration see the following example: A 9 month floating rate note
instrument will be calibrated and priced. The resulting spread over yield value
(0.00398785481397732), base value (99.7917725092950) and effective duration
(3.93109370316470e-005)is retrieved:

Chapter 4: Octave octarisk Classes 85

disp('Pricing Floating Rate Bond Object and calculating sensitivities')]]
b = Bond();

b = b.set('Name', 'Test_FRN', 'coupon_rate',0.00, 'value_base',99.7527, ...}
'coupon_generation_method', 'backward', 'compounding_type', 'simple');

b = b.set('maturity_date','30-Mar-2017', 'notional', 100,
'compounding_type', 'simple','issue_date','21-Apr-2011');

b = b.set('term',3,'term_unit', 'months', 'last_reset_rate',-0.0024, 'sub_Type','FRN
r = Curve();

r = r.set('id', 'REF_IR_EUR', 'nodes', [30,91,365,730],

'rates_base', [0.0001002740,0.0001002740,0.0001001390,0.0001000690]1, ...H
'method_interpolation', 'linear');

b = b.rollout('base',r, '30-Jun-2016"');

c = Curve();

c = c.set('id','IR_EUR', 'nodes', [30,90,180,365,730],

'rates_base', [0.0019002740,0.0019002740,0.0019002301,0.0019001390,0.001900069] ,
'method_interpolation', 'linear');

= b.set('clean_value_base',99.7527, 'spread',0.003);
b.calc_spread_over_yield('30-Jun-2016',c);

.get('soy")

= b.calc_value('30-Jun-2016"', 'base',c);

.getValue('base')

= b.calc_sensitivities('30-Jun-2016',c,r);

.get('eff_duration')

oo o o o oo

Chapter 4: Octave octarisk Classes 86

Dependencies of class:

rollout_structured_cashflows

A

—>

P @Bond::rollout

interpolate_curve

——————————————— P @Bond::calc_sensitivities

pricing_npv

convert_curve_rates

—————P» @Bond::calc_key_rates

————P» @Bond::calc_value
> option_bond_hw
@Bond::Bond ——pp» @Bond::calc_spread_over_yield
—>

get_bond_tf_rates

L P @Bond::calc_yield_to_mat

calibrate_generic

P @Bond::get
discount_factor

P @Bond::getCF

P @Bond:i:set —————————Ppp1 return_checked_input

4.17 Position.help

object = Position (id) [Octarisk Class]
Position and Portfolio class.

e id (string): id of object

Chapter 4: Octave octarisk Classes

87

Chapter 4: Octave octarisk Classes

Dependencies of class:

addtodatefinancial

SE—

P @Position::aggregate

—>

get FX_rate

A

@Position::Position

P @Position::calc_risk

———— P @Position::del_scen_data

@Position::get

@Position::getCF
—>

—>
@Position::getValue

@Position::isProp

get_quantile_estimator

get_srri_simple

plot_AA_piecharts

plot_HHI_piecharts

plot_hist_var

P @Position::plot ————pp

plot_hist_var_simple

) /

plot_sensitivities

Pt plot_solvencyratio

get_srri

Pt calc_HHI

get_credit_rating

88

Chapter 4: Octave octarisk Classes 89

4.18 Retail.help

object = Retail(id) [Octarisk Class]

object = Retail() [Octarisk Class]
Class for setting up various Retail objects like saving plans with bonus or defined
contribution pension plans and retirement expenses. Cash flows are generated specific
for each Retail sub type and subsequently discounted to calculate the Retail value.

e DCP: Defined contribution savings plan with guaranteed value at maturity and
surrender value.

e SAVPLAN: Savings plan with optional bonus at maturity.

e RETEXP: Modelling retirement expenses depending on survival rates and infla-
tion expectation rates.

e GOVPEN: Modelling government pensions depending on survival rates and in-
flation expectation rates.

In the following, all methods and attributes are explained and a code example is
given.
Methods for Retail object obj:

e Retail(id) or Retail(): Constructor of a Bond object. id is optional and specifies
id and name of new object.

e obj.set(attribute,value): Setter method. Provide pairs of attributes and values.
Values are checked for format and constraints.

e obj.get(attribute): Getter method. Query the value of specified attribute.

e obj.calc_value(valuation_date,scenario, discount_curve) Calculate the net present
value of cash flows of Bonds (including pricing of embedded options)

e obj.rollout(scenario, valuation_date): used for SAVPLAN and DCP without re-
demption

e obj.rollout(scenario, valuation_date, discount_curve): used for DCP with re-
demption

e obj.rollout(scenario, valuation_date, inflation_exp_curve, longevity_table): used
for retirement expenses and government pensions

e obj.calc_sensitivities(valuation_date,discount_curve) Calculate numerical sensi-
tivities for the given Retail instrument.

e obj.calc_key_rates(valuation_date,discount_curve) Calculate key rate sensitivities
for the given Retail instrument.

e obj.getValue(scenario): Return Retail value for given scenario. Method inherited
from Superclass Instrument

e Retail.help(format,returnflag): show this message. Format can be [plain text,
html or texinfo]. If empty, defaults to plain text. Returnflag is boolean: True re-
turns documentation string, false (default) returns empty string. [static method]

Attributes of Retail objects:
e id: Instrument id. Has to be unique identifier. (Default: empty string)
e name: Instrument name. (Default: empty string)

e description: Instrument description. (Default: empty string)

Chapter 4: Octave octarisk Classes 90

e value_base: Base value of instrument of type real numeric. (Default: 0.0)

e currency: Currency of instrument of type string. (Default: ’EUR’) During in-
strument valuation and aggregation, FX conversion takes place if corresponding
FX rate is available.

e asset_class: Asset class of instrument. (Default: ’derivative’)
e type: Type of instrument, specific for class. Set to 'Bond’.
e value_stress: Line vector with instrument stress scenario values.

e value_mc: Line vector with instrument scenario values. MC values for several
timestep_mc are stored in columns.

e timestep_mc: String Cell array with MC timesteps. If new timesteps are set,
values are automatically appended.

For illustration see the following example: A monthly savings plan with extra pay-
ments and bonus at maturity is valuated. The resulting base value (52803.383344)
and effective duration (4.9362)is retrieved:

disp('Pricing Savings Plan');

rates_base = [0.0056,0.02456] ;

rates_stress = rates_base + [-0.05;-0.03;0.0;0.03;0.05];
valuation_date = '31-May-2019';

r = Retail();

r r.set('Name', 'Test_SAVPLAN', 'sub_type', 'SAVPLAN',
'coupon_rate',0.0155, 'coupon_generation_method',
'backward','term',1,'term_unit', 'months');

r = r.set('maturity_date','05-May-2024"','compounding_type',
'simple', 'savings_rate',500);

r = r.set('savings_startdate','05-May-2014"',
'savings_enddate', '05-May-2021');

r = r.set('extra_payment_values', [17500],
'extra_payment_dates',cellstr('17-May-2019'),
'bonus_value_current',0.5, 'bonus_value_redemption',0.15);

= r.set('notice_period',3, 'notice_period_unit', 'months');
r.rollout('base',valuation_date);
r.rollout('stress',valuation_date);

= Curve();

= c.set('id','IR_EUR', 'nodes', [365,7300]);

= c.set('rates_base',rates_base, 'rates_stress',rates_stress);
.set('method_interpolation','linear');
.calc_value(valuation_date, 'base',c);
.calc_value(valuation_date, 'stress',c);
.calc_sensitivities(valuation_date,c);
.calc_key_rates(valuation_date,c);

HRRHRROOODOKRHKKH
H R HRO

Dependencies of class:

P>

convert_curve_rates

———— P @Retail::calc_key_rates —— P

interpolate_curve

@Retail::calc_sensitivities —P

calibrate_generic

A

@Retail::calc_value

@Retail::Retail @Retail::get
— >

@Retail::getCF

—P>

discount_factor

pricing_npv

P @Retail::rollout ——————Ppt rollout_retail_cashflows

P @Retail::set —— P

return_checked_input

91

92

5 Octave Functions and Scripts
In the following sections you find the Octave function texinfo.

5.1 adapt_matlab

Delete unneccessary scripts

5.2 addtodatefinancial

[newdatenum newdatevec] = addtodatefinancial(valdate, [Function File]
argl, arg2, arg3)
Add or subtract given years, months or days to a given input date. End of month of
input date will be preserved if no days are added. Both datenum and datevec format
are returned. Explicit specification of years, months, days:

valdate: start date for date manipulation
e argl: years to add or subtract
e arg2: months to add or subtract (optional)
e arg3: days to add or subtract (optional)
Implicit specification of value and unit:
e valdate: start date for date manipulation
e argl: value to add or subtract
e arg2: unit (day(s), month(s), year(s))
Single date input possible only. Example call:
[newdatenum newdatevec] = addtodatefinancial('31-Mar-2016', 1, 'years')]
newdatenum = 736785
newdatevec = [2017 3 31]
[newdatenum newdatevec] = addtodatefinancial('31-Mar-2016', -1, -6, -4)1
newdatenum = 735869
newdatevec = [2014 9 27]
See also: addtodate.

5.3 aggregate_positions

[position_struct position_failed_cell portfolio_value [Function File]
portfolio_shock] = aggregate_positions (position_struct,
position_failed_cell, instrument_struct, index_struct,
scennumber, scen_set, fund_currency, port_id, printflag)

Aggregate position and portfolio base, stress and MC scenarios shocks. Instrument
MC values are aggregated and converted to fund currency based on position informa-
tion (quantity and position ID referencing instrument ID).

Return total portfolio base, stress or MC values and position struct with new keys
\’basevalue\’, \'stresstests\’ or \’'mc_scenarios\’ according to provided scenario set.
Input:

e position_struct: structure with position definitions (quantity and ID)

Chapter 5: Octave Functions and Scripts 93

e position_failed_cell: failing position ids are stored in this cell

e instrument_struct: structure with instrument objects

e index_struct: structure with FX objects

e scennumber: number of stress or MC scenarios

e scen_set: Scenario set used for aggregation (e.g. base, stress, 250d or 1d)
e fund_currency: FX conversion of instrument values into fund currency

e port_id: Portfolio ID

e printflag: Boolean flag: true = print information about aggregation to stdout

See also: aggregate_position_base.

5.4 any2str

[output typel = any2str(value) [Function File]
Convert input value into string. Therefore a type dependent conversion is performed.
One output string (a one-liner!) and the input type is returned. Conversion is
supported for scalars, matrizes up to three dimensions, cells, boolean values and
structs.

Variables:

e value: input value (can be struct,string,integer,...)
e output: input value converted to string

e type: output type

5.5 betainc_vec

betainc_vec (x, a, b)
betainc_vec (x, a, b, tail)
Compute the incomplete beta function ratio.
This function shadows the core function betainc. Performance improvement due to
vectorized C++. Support for single precision was removed.
This is defined as

I.(a,b) = B(;b)/mt“—l(l —)P dt

0

with x real in [0,1], a and b real and strictly positive. If one of the input has more
than one components, then the others must be scalar or of compatible dimensions.
By default or if tail is "lower" the incomplete beta function ratio integrated from
0 to x is computed. If tail is "upper" then the complementary function integrated
from x to 1 is calculated. The two choices are related as

betainc (x, a, b, "lower") = 1 - betainc (x, a, b, "upper").

Reference

A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland, W.B. Jones Handbook of
Continued Fractions for Special Functions, ch. 18.

See also: beta, betaincinv, betaln.

Chapter 5: Octave Functions and Scripts 94

5.6 betainv_vec

betainv_vec (x, a, b)
For each element of x, compute the quantile (the inverse of the CDF) at x of the Beta
distribution with parameters a and b. Performance improvement: Calling vectorized
version of betacdf (batainc_vec). Supporting full double precision.

5.7 calcConvexityAdjustment

[adj_rate adj] = calcConvexityAdjustment [Function File]
(valuation_date, instrument, r, sigma, t1, t2)

Return convexity adjustment to a given forward rate with specified forward start
and end dates and forward volatility. For CMS Rate adjustments use function
get_cms_rate.
Implementation of log-normal convexity adjustment according to H.P. Deutsch,
Derivate und Interne Modelle, 4th Edition, Section 14.5 Convexity Adjustment.
Normal model convexity adjustment just uses absolute volatility (sigma) instead of
relative volatility (sigma*r). Input and output variables:

e valuation_date: valuation date [required]

e instrument: instrument struct or object (with model, basis) [required]

r: forward rate [required]

e sigma: forward volatility (act/365 continuous) [required|
e t1: forward start date [required]

e t2: forward end date [required]

e adj_rate: OUTPUT: adjusted forward rate

e adj: OUTPUT: adjustment only

See also: timefactor.

5.8 calc_HHI

[HHI concentration] = calc_HHI(exposure) [Function File]
Calculate the normalized Herfindahl-Hirschmann Index and classify
the concentration risk according to US DoJ & FTC classification (see
https://www.justice.gov/atr /herfindahl-hirschman-index).

See also: timefactor.

5.9 calibrate_evt_gpd

[chi sigma u] = calibrate_evt_gpd(v) [Function File]
Calibrate sorted losses of historic or MC portfolio values to a generalized pareto
distribution and returns chi, sigma and u as parameters for further VAR and ES
calculation.

Implementation according to Risk Management and Financial Institutions by John
C. Hull, 4th edition, Wiley 2015, section 13.6, page 292ff.
Variables:

Chapter 5: Octave Functions and Scripts 95

e v: INPUT: sorted profit and loss distribution of all required tail events (1xN
vector)

o chi: OUTPUT: Generalized Pareto distribution: shape parameter (scalar)
e sigma: OUTPUT: scale parameter (scalar)

u: OUTPUT: location parameter(scalar)

5.10 calibrate_generic

[calibrated_value retcode] = calibrate_generic(objf, [Function File]
x0, 1b, ub)
Calibrate a given objective function according to start parameter and bounds. This
function calls the generic optimizer fmincon.
Variables:
e objf: pointer to objective function
e x(: start value
e [b: lower bound
e ub: upper bound

See also: fmincon.

5.11 compile_oct_files

compile_oct_files (path_octarisk) [Function File]
Compile all .cc files in folder path_octarisk/oct_files and move successfully compiled
.oct files to top folder.

5.12 convert_curve_rates

[rate_target conversion_type] = convert_curve_rates [Function File]
(valuation_date, node, rate_origin, comp_type_origin,
comp_freq_origin, dcc_basis_origin, comp_type_target,
comp_freq_target, dcc_basis_target)

Convert a given interest rate from one compounding type, frequency and day count
convention (dcc) into another type, frequency and dcc.

The following conversion formulas are applied: (the timefactor is depending on day
count convention and days between valuation_date and valuation_date + node)). Con-

vert
from CONT -> SMP: (exp(rate_origin .* timefactor_origin) -1)
./ timefactor_target
from SMP -> CONT: In(1 + rate_origin .* timefactor_origin) ...|J]

./ timefactor_target

from DISC -> CONT: 1n(1 + rate_origin./ comp_freq_origin)

.* (timefactor_origin .* comp_freq_origin) ./ timefactor_target

from CONT -> DISC: (exp(rate_origin .* timefactor_origin ...

./ (comp_freq_target .* timefactor_target)) - 1) .* comp_freq_target]]

Chapter 5: Octave Functions and Scripts 96

from SMP -> DISC: ((1 + rate_origin .* timefactor_origin) ...|J]

.7(1./(comp_freq_target .* timefactor_target)) -1) .* comp_freq_target]]

from DISC -> SMP: ((1 + rate_origin ./ comp_freq_origin) ...|J]
."(comp_freq_origin .* timefactor_origin) -1) ./ timefactor_target

from CONT -> CONT: rate_origin .* timefactor_origin ./ timefactor_target|]
from SMP -> SMP: rate_origin .* timefactor_origin ./ timefactor_target]]
from DISC -> DISC: ((1 + rate_origin ./ comp_freq_origin)
."((comp_freq_origin .* timefactor_origin) ./ (comp_freq_target ...JJ

.* timefactor_target)) -1) .* comp_freq_target

Please note: compounding_freq is only relevant for compounding type DISCRETE.
Otherwise it will be neglected. During object invocation, a default value for com-
pounding_freq is set, even it is not required. Example call:

0.006084365 = convert_curve_rates(datenum('31-Dec-2015'),643,0.0060519888, 'cont'

Input and output variables:
e valuation_date: base date used in timefactor calculation (datestr or datenum)
e node: number of days until second date used in timefactor calculation (scalar)
e rate_origin: interest rate between first and second date (scalar)

e comp_type_origin: compounding type of target rate: [simple, simp, disc, discrete,
cont, continuous] (string)

e comp_freq_origin: compounding frequency of target rate: 1,2,4,12,52,365 or
[daily,weekly,monthly,quarter,semi-annual,annual] (scalar or string)

e dcc_basis_origin: day-count basis of target rate(scalar)

e comp_type_target: compounding type of target rate: [simple, simp, disc, discrete,
cont, continuous] (string)

e comp_freq_target: compounding frequency of target rate: 1,2,4,12,52,365 or
[daily,weekly,monthly,quarter,semi-annual,annual] (scalar or string)

e dcc_basis_target: day-count basis of target rate(scalar)
e rate_target: OUTPUT: converted interest rate

e conversion_type: OUTPUT: conversion type from x to y

See also: timefactor.

5.13 correct_correlation_matrix

[A_scaled pos_sem_def_bool] = [Function File]
correct_correlation_matrix (M)
Return a positive semi-definite matrix A_scaled to a given input matrix M. This
function tests for indefiniteness of the input matrix and eventuallry adjusts negative
Eivenvalues to 0 or slightly positive values via some iteration steps.
Reference: 'Implementing Value at Risk’, Best, Philip W., 1998.

Chapter 5: Octave Functions and Scripts 97

5.14 discount_factor

df = discount_factor (di1, d2, rate, comp_type, basis, [Function File]
comp_freq)
Compute the discount factor for a specific time period, compounding type, day count
basis and compounding frequency.

Input and output variables:
e dI: number of days until first date (scalar)
e d2: number of days until second date (scalar)
e rate: interest rate between first and second date (scalar)
e comp_type: compounding type: [simple, simp, disc, discrete, cont, continuous]
(string)
e basis: day-count basis (scalar or string)

e comp-_freq: 1,2,4,12,52,365 or [daily,weekly,monthly, quarter,semi-annual,annual]
(scalar or string)

e df: OUTPUT: discount factor (scalar)

See also: timefactor.

5.15 doc_instrument
= doc_instrument () [Function File]

This script contains all integration test cases for Octarisk’s instruments. This script
if part of the integration test suite.

5.16 doc_riskfactor

object = Riskfactor () [Function File]
object = Riskfactor (name, id, type, description, model, [Function File]
parameters)

Construct risk factor object. Riskfactor Class Inputs:
e name (string): Name of object
e id (string): Id of object
e type (string): risk factor type
e description (string): Description of object
e model (string): statistical model in list [GBM,BM,SRD,OU]

e parameters (vector): vector with values [mean,std,skew kurt,
start_value,mr_level,mr_rate,node,rate]
If no input arguments are provided, a dummy IR risk factor object is generated.
The constructor of the risk factor class constructs an object with the following prop-
erties:
Class properties:

e name: Name of object

Chapter 5: Octave Functions and Scripts 98

e id: Id of object

e description: Description of object

e type: risk factor type

e model: risk factor model

e mean: first moment of risk factor distribution

e std: second moment of risk factor distribution

e skew: third moment of risk factor distribution

e kurt: fourth moment of risk factor distribution

e start_value: Actual spot value of object

e mr_level: In case of mean reverting model this is the mean reversion level
e mr_rate: In case of mean reverting model this is the mean reversion rate

e node: In case of a interest rate or spread risk factor this is the term node

e rate: In case of a interest rate or spread risk factor this is the term rate at the
node

e scenario_stress: Vector with values of stress scenarios

e scenario_mc: Matrix with risk factor scenario values (values per timestep per
column)
e timestep_mc: MC timestep per column (cell string)

property_value = Riskfactor.getValue((base,stress,mc_timestep),’abs’) Riskfactor
Method getValue
Return the value for a risk factor object. Specify the desired return values with a
property parameter. If the second argument abs is set, the absolut scenario value is
calculated from scenario shocks and the risk factor start value.
Timestep properties:

e base: return base value

e stress: return stress values

e any regular MC timestep (e.g. ’1d’): return scenario (shock) values at MC
timestep

property_value = Riskfactor.get (property) object = Riskfactor.set (property, value)

Riskfactor Methods get / set
Get / set methods for retrieving or setting risk factor properties.

See also: Instrument.

5.17 epanechnikov_weight

[X]

= epanechnikov_weight (scenarios, bandwidth, alpha) [Function File]
Compute the scenario weights based on the Epanechnikov Kernel (1969) quantile
estimator. The Epanechnikov Kernel has the highest efficiency of all kernels.
Variables:

Chapter 5: Octave Functions and Scripts 99

e scenarios: number of total scenarios

bandwidth: bandwidth around scenario quantile (+- scenarios)
alpha: quantile (e.g. 0.005)
X: OUTPUT: EP-weight column vector

5.18 estimate_parameter

estimate_parameter () [Function File]
Calculate statistics for historic time series. This script is not used in octarisk process,
but it should simplify the parameter estimation for input parameters required for risk
factor definitions.
The time series file (columns: risk factors, rows: historic values) will be generated by
an python script (to be done).
The following statistic parameter are calculated: mean, volatility, skewness, kurtosis
for simple, geometric and lognormal distributed value. Moreover mean reversion rates
and levels are calculated assuming ergodic and regression methods.

5.19 fmincon

[x obj info iter nf lambda] = fmincon(objf, x0, A, b, [Function File]
Aeq, beq, 1b, ub)

Wrap basic functionality of Matlab’s solver fmincon to Octave’s sqp.
Non-linear constraint functions provided by fmincon’s function handle nonlincon are
NOT processed.
Return codes are also mapped according to fmincon expected return codes. Note:
This function mimics the behaviour of fmincon only.
In order to speed up minimizing, a bounded minimization algorithm fminbnd is used
in a first try. If this fails, sqp algorithm is called.

Matlab:
Axx <= b
Aeg*x = beq
1b <= x <= ub
Octave:

g(x) = -Aeg*x + beq = 0
h(x) = -A*x + b >= 0
1b <= x <= ub
See the following example:
[x obj info iter] = fmincon (@(x)100*(x(2)-x(1)"2)"2 + (1-x(1))~2,[0.5,0],[1,2],1
x = [0.41494,0.17011]
obj = 0.34272
info = 1
iter = 6
Explanation of Input Parameters:

e objf: pointer to objective function

Chapter 5: Octave Functions and Scripts 100

e x(: initial values

e A: inequality constraint matrix

e b: inequality constraint vector

e Aeq: equality constraint matrix

e beq: equality constraint vector

e Ib: lower bound (required for fminbnd, defaults to -10)
e ub: upper bound (required for fminbnd, defaults to 10)

See also: sqp.

5.20 gammainc

gammainc (x, a)
gammainc (x, a, tail)
Compute the normalized incomplete gamma function.

This is defined as 1 "
z,a) = —— [t* e tdt
7() F(a)]ﬁ

with the limiting value of 1 as x approaches infinity. The standard notation is P(a,),
e.g., Abramowitz and Stegun (6.5.1).

If a is scalar, then gammainc (x, a) is returned for each element of x and vice versa.
If neither x nor a is scalar, the sizes of x and a must agree, and gammainc is applied
element-by-element. The elements of a must be nonnegative.

By default or if tail is "lower" the incomplete gamma function integrated from 0 to
x is computed. If tail is "upper" then the complementary function integrated from
x to infinity is calculated.

If tail is "scaledlower", then the lower incomplete gamma function is multiplied
by I'(a + 1) exp(x)z~. If tail is "scaledupper", then the upper incomplete gamma
function is divided by the same quantity.

References:

M. Abramowitz and I. Stegun, Handbook of mathematical functions Dover publica-
tions, INC., 1972.

W. Gautschi, A computational procedure for incomplete gamma functions ACM
Trans. Math Software, pp. 466—481, Vol 5, No. 4, 2012.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery Numerical Recipes
in Fortran 77, ch. 6.2, Vol 1, 1992.

See also: gamma, gammainc, gammaln.

5.21 gammaincinv

gammaincinv (y, a)

gammaincinv (y, a, tail)
Compute the inverse of the normalized incomplete gamma function.
The normalized incomplete gamma function is defined as

1 ‘ a—1_—t
F(a)/ot e ‘dt

’7(1‘,&) =

Chapter 5: Octave Functions and Scripts 101

and gammaincinv (gammainc (x, a), a) = x for each nonnegative value of x. If a is
scalar, then gammaincinv (y, a) is returned for each element of y and vice versa.
If neither y nor a is scalar, the sizes of y and a must agree, and gammaincinv is
applied element-by-element. The elements of y must be in [0, 1] and those of a must
be positive.

By default or if tail is "lower" the inverse of the incomplete gamma function inte-
grated from 0 to x is computed. If tail is "upper", then the complementary function
integrated from x to infinity is inverted.

The function is computed by standard Newton’s method, by solving

y—7(z,a)=0

Reference: A. Gil, J. Segura, and N. M. Temme, Efficient and accurate algorithms
for the computation and inversion of the incomplete gamma function ratios, SIAM J.
Sci. Computing, pp. A2965-A2981, Vol 34, 2012.

See also: gamma, gammainc, gammaln.

5.22 generate_willowtree

value = generate_willowtree (N, dk, z_method, [Function File]
willowtree_save_flag, path_static)
Computes the willow tree used e.g. for option pricing.
The willow tree is used as a lean and accurate option pricing lattice. This implemen-
tation of the willow tree concept is based on following literature:

o 'Willow Tree’, Andy C.T. Ho, Master thesis, May 2000

e 'Willow Power: Optimizing Derivative Pricing Trees’, Michael Curran, ALGO
RESEARCH QUARTERLY, Vol. 4, No. 4, December 2001

Number of nodes must be in list [10,15,20,30,40,50]. These vectors are optimized by
Currans Method to fulfill variance constraint (default: 20)
Variables:

e N: Number of timesteps in tree

e dk: timestep size of tree

e z_method: number of nodes per timestep

e willowtree_save_flag: boolean variable for saving tree to file
e path_static: path to directory if file shall be saved

e Transition_matrix: [output] optimized transition probabilities ("the Tree")

z: [output] Z(0,1) distributed random variables used in tree

See also: option_willowtree.

5.23 getCapFloorRate

[rate] = getCapFloorRate (CapFlag, F, X, tf, sigma, model) [Function File]
Compute the forward rate of caplets or floorlets according to Black, Normal or ana-
lytical calculation formulas.

Input and output variables:

Chapter 5: Octave Functions and Scripts 102

e CapFlag: model (Black, Normal) [required]

e [forward rate (annualized) [required]

e X: strike rate (annualized) [required]

e tf: time factor until forward start date (in days) [required]

e sigma: swap volatility according to tenor, term and moneyness (act/365 contin-
uous)[required|

e model: model (Black, Normal, Analytical) [required]

e rate: OUTPUT: adjusted forward rate

For Black model, the following formulas are applied:
Caplet_rate = (FxN(d1) - XxN(d2))
Floorlet_rate = (X*N(-d2) - FxN(-d1))
dl = (Qog(F/X) + (0.5*sigma~2)*T)/(sigma*sqrt(tf))
d2 = d1 - sigma*sqrt(tf)

For Normal model, the following formulas are applied:
Caplet_rate = (F - X) * normcdf(d) + sigma*sqrt(tf) * normpdf (d)
Floorlet_rate = (X - F) * normcdf(-d) + sigma*sqrt(tf) * normpdf (d)
d = (F - X) / (sigma*sqrt(tf));

For analytical model, the following formulas are applied:
Caplet_rate = max(0, F - X);
Floorlet_rate = max(0, X - F);

See also: swaption_bachelier, swaption_black76.

5.24 getFlooredSpotByFlooringForwardCurve

[TermForward spotrates_floored forwardrates [Function File]
forwardrates_floored] =
getFlooredSpotByFlooringForwardCurve (TermSpot, SpotRates,
floor_rate, term_forwardrate, basis, comp_type, comp_freq,
interp_method)

Compute the floored spot curve calculated by flooring the forward curve.
Explanation of Input Parameters:
e TermSpot: is a 1xN vector with all timesteps of the given curve
e SpotRates: is MxN matrix with curve rates defined in columns. Each row con-
tains a specific scenario with different curve structure
e floor_rate: is a scalar, specifiying the floor applied to forward rates
e term_forwardrate: is a scalar, specifiying forward period
e basis: (optional) day count convention of instrument (default: act/365)
e comp_type: (optional) specifies compounding rule (simple, discrete, continuous
(defaults to 'cont’)).
e comp_freq: (optional) compounding frequency (default: annual)

Chapter 5: Octave Functions and Scripts 103

e interp_method: (optional) specifies interpolation method for retrieving interest
rates (defaults to ’linear’).

Explanation of Output Parameters:
e TermForward: 1xN vector with all timesteps for output curves
e spotrates_floored: MxN matrix with floored spot curves
e forwardrates: MxN matrix with forward curves

e forwardrates_floored: MxN matrix with floored forward curves

See also: timefactor.

5.25 get_FX_rate

[fx_rate] = [Function File]
get_FX_rate(index_struct, curl, curB, scen_set)
Return the FX rate for a given pair of currencies and scenario set.
Input and output variables:

o fx rate: FX rate (either scalar or vector) [output]

e index_struct: structure containing FX index objects [required]
e curA: base currency [required]

e curB: foreign currency [required]

e scen_set: scenario set (e.g. base, stress or 250d) [required]

See also: timefactor.

5.26 get_basis

[basis] = get_basis(dcc_string) [Function File]
Map the basis for value according to a day count convention string. In order to intro-
duce new day count conventions, add the basis to the cell and include the calculation
method for the day count convention into the function timefactor().

The following mapping will be done for the input strings:

e basis: day-count basis (scalar)
e 0 = actual/actual or act/act (1/1 mapped to act/act)
o 1 =30/360 SIA
= act/360 or actual/360 or actual/360 Full
3 = act/365 or actual/365 or actual/365 Full
4 = 30/360 PSA
5 = 30/360 ISDA
6 = 30/360 European
7 = act/365 Japanese
8 = act/act ISMA
9 = act/360 ISMA

[\

Chapter 5: Octave Functions and Scripts 104

e 10 = act/365 ISMA

o 11 = 30/360E

e 13 =30/360 or 30/360 German
e 14 = business/252

e 15 = act/364

See also: timefactor.

5.27 get_basket_volatility

[basket_vola, basket_dict] = get_basket_volatility [Function File]
(valuation_date, value_type, option, instrument_struct,
index_struct, curve_struct, riskfactor_struct, matrix_struct,
surface_struct)

Return diversified volatility for synthetic basket instruments. The diversified volatility
is dependent on the option maturity and strike, so the volatility has to be calculated
for each basket option valuation. The following two methods are implemented:

o Levy 1992: Levy uses a log-normal density as a first-order approximation to the
true density. This holds for small maturities or volatilities only, since a weighted
sum of log-normal distribution is not a log-normal distribution by itself.

e VCV approach: Assuming a normal distribution of underlying, the basket volatil-
ity is calculated by sigma = sqrt(w’*C*w) with Covariance Matrix C and the
linear-combinations vector w.

e Beisser: Calculate lower limit of option prices by adjusting input volatilities and
strikes. Also returns modified strike basket_dict.

5.28 get_bond_tf_rates

[tf_vec rate_vec df_vec] = [Function File]
get_bond_tf_rates(valuation_date, cashflow_dates,
cashflow_values, spread_constant, discount_nodes,
discount_rates, basis, comp_type, comp_freq, interp_discount)

Compute the time factors, rates and discount factors for a given cash flow pattern
according to a given discount curve and day count convention etc.
Pre-requirements:

e installed octave financial package

e custom functions timefactor, discount_factor, interpolate_curve, and
convert_curve_rates

Input and output variables:

e valuation_date: Structure with relevant information for specification of the for-
ward:

e cashflow_dates: cashflow_dates is a 1xN vector with all timesteps of the cash flow
pattern

Chapter 5: Octave Functions and Scripts 105

cashflow_values: cashflow_values is a MxN matrix with cash flow pattern.

spread_constant: a constant spread added to the total yield extracted from dis-
count curve and spread curve (can be used to spread over yield)

discount_nodes: tmp_nodes is a 1xN vector with all timesteps of the given curve

discount_rates: tmp_rates is a MxN matrix with discount curve rates defined in
columns. Each row contains a specific scenario with different curve structure

basis: OPTIONAL: day-count convention of instrument (either basis number
between 1 and 11, or specified as string (act/365 etc.)

comp_type: OPTIONAL: compounding type of instrument (disc, cont, simple)
comp-_freq: OPTIONAL: compounding frequency of instrument (1,2,3,4,6,12 pay-
ments per year)

comp_type_curve: OPTIONAL: compounding type of curve

basis_curve: OPTIONAL: day-count convention of curve

comp_freq_curve: OPTIONAL: compounding frequency of curve
interp_discount: OPTIONAL: interpolation method of discount curve

sensi_flag: OPTIONAL: boolean variable (calculate sensitivities) (default: lin-
ear)

tf_vec: returns a Mx1 vector with time factors per cash flow date
rate_vec: returns a Mx1 vector with rates per cf date

df-vec: returns a Mx1 vector with discount factors per cf date method)

See also: timefactor, discount_factor, interpolate_curve, convert_curve_rates.

5.29 get_cms_rate_hagan

forward_rate= get_cms_rate_hagan(valuation_date, [Function File]

value_type, swap, curve, sigma, payment_date)

Compute the cms rate of an underlying swap floating leg incl. convexity adjustment.
The implementation of cms convexity adjustment is based on P.S. Hagan, Convexity
Conundrums, 2003. There is a minor issue with Hagans formulas: An adjustment
to the value of the swaplet / caplet / floorlet is being calculated. For calculation of
this adjustment a volatility is required. The volatility has to be interpolated from
a given volatility cube with a given moneyness. In case of swaplets, the moneyness
can be assumed to be 1.0. For caplets / floorlets, the moneyness can be calculated
as (cms_rate-X) or (cms_rate/X). Here either the adjusted cms rate or still the unad-
justed cms rate can be used to calculate the moneyness.

Explanation of Input Parameters:

valuation_date: valuation date

value_type: value type (e.g. base or stress)

swap: swap instrument object, underlying of cms swap
curve: discount curve object

sigma;: volatility used for calculating convexity adjustment

Chapter 5: Octave Functions and Scripts 106

e payment_date: payment date of cashflow

See also: discount_factor, timefactor, rollout_structured_cashflows.

5.30 get_cms_rate_hull

forward_rate= get_cms_rate_hull(valuation_date, [Function File]
value_type, swap, curve, sigma, model)
Compute the cms rate of an underlying swap floating leg incl. convexity adjustment.
The implementation of cms convexity adjustment is based on Hull: Option, Futures
and other derivatives, 6th edition, page 734ff. Explanation of Input Parameters:

e valuation_date: valuation date

e value_type: value type (e.g. base or stress)

e swap: swap instrument object, underlying of cms swap

e curve: discount curve object

e sigma: volatility used for calculating convexity adjustment

e model: volatility model used for calculating convexity adjustment

See also: discount_factor, timefactor, rollout_structured_cashflows.

5.31 get_credit_rating

[rating] = get_credit_rating(entity) [Function File]
Map the entity id to credit rating (AAA-D). Input from various sources.

5.32 get_dependencies

get_dependencies(path_octarisk, path_out) [Function File]

Print a GraphViz .dot file containing all dependencies between Class methods and
function names. All information is directly retrieved from all scriptnames and script
source code. Comments and test cases are neglected. Final dot files are printed
separately for all Classes and for an overall overview directly into the provided output
folder. Compile .dot files with graphviz command:

dot -Tpdf Classname.dot -o Classname.pdf

dot -Tpng octarisk_dependencies.dot -o octarisk_dependencies.png

5.33 get_documentation

get_documentation(type, path_octarisk, [Function File]
path_documentation)
Print documentation for all Octave functions in specified path. The documentation
is extracted from the function headers and printed to a file 'functions.texi’, function-
name.html’ or to standard output if a specific format (texinfo, html, txt) is set.
The path to all files has to be set in the variable path_documentation.

Chapter 5: Octave Functions and Scripts 107

5.34 get_documentation_classes

get_documentation_classes(type, path_octarisk, [Function File]
path_documentation)
Print documentation for all Octave Class definitions in specified path. The documen-
tation is extracted from the static class methods and printed to a file "functions.texi’,
'functionname.html’ or to standard output if a specific format (texinfo, html, txt) is
set.
The path to all files has to be set in the variable path_documentation.

5.35 get_esg_rating

[rating] = get_esg_rating(score) [Function File]
Map the MSCI ESG score to rating class. See https://www.msci.com/esg-ratings for
further information.

5.36 get_forward_rate

forward_rate= get_forward_rate(nodes, rates, days_to_t1, [Function File]
days_to_t2, comp_type, interp_method, comp_freq,, basis,
valuation_date, comp_type_curve, basis_curve, comp_freq_curve ,
floor_flag)
Compute the forward rate calculated from interpolated rates from a yield curve.
CAUTION: the forward rate is floored to 0.000001. Explanation of Input Parameters:
Variables:

e nodes: is a 1xN vector with all timesteps of the given curve

e rates: is MxN matrix with curve rates defined in columns. Each row contains a
specific scenario with different curve structure

e days_to_tl: is a scalar, specifiying term1 in days
e days_to_t2: is a scalar, specifiying term2 in days after term1

e comp._type: (optional) specifies compounding rule (simple, discrete, continuous
(defaults to 'cont’)).

e interp_method: (optional) specifies interpolation method for retrieving interest
rates (defaults to ’linear’).

e comp-_freq: (optional) compounding frequency (default: annual)

e basis: (optional) day count convention of instrument (default: act/365)
e valuation_date: (optional) valuation date (default: today)

e comp_type_curve: (optional) compounding type of curve

e basis_curve: (optional) day count convention of curve

e comp-_freq_curve: (optional) compounding frequency of curve

e floor_flag: (optional) Bool: flooring forward rates to 0.000001

See also: interpolate_curve, convert_curve_rates,timefactor.

Chapter 5: Octave Functions and Scripts 108

5.37 get_gpd_var

[VAR ES] = get_gpd_var(chi, sigma, u, g, n, nu) [Function File]
Return Value-at-risk (VAR) and expected shortfall (ES) according to a generalized
Pareto distribution.

Implementation according to Risk Management and Financial Institutions by John
C. Hull, 4th edition, Wiley 2015, section 13.6, page 292ff.
Input and output variables:

e chi: GPD shape parameter one (float)

e sigma: GPD shape parameter two (float)

o u: offset level (float)

e ¢ quantile (float in [0:1])

e n: Number of scenarios in total distribution (integer)

e nu: number of tail scenarios (in doubt set to 0.025 * n) (integer)
e VAR: OUTPUT: Value-at-Risk according to the GPD

e ES: OUTPUT: Expected shortfall according to the GPD

Example call for calculation of VAR and ES for several confidence levels:
[VAR ES] = get_gpd_var(0.00001,1632.9,5930.8, [0.99;0.995;0.999],50000,1250)f

5.38 get_informclass

[class] = get_informclass(score) [Function File]
Map the INFORM score to risk class very low ... very high. See http://www.inform-
index.org/ for further information.

5.39 get_informscore

[score] = get_informscore(isocode) [Function File]
Map the ISO-2 currency code to INFORM risk score. See http://www.inform-
index.org/ for further information. Basic idea: if absolute needs (food, shelter,
political stability, natural desaster recovery) is not given, financial investments
have to be closely monitored. INFORM risk score delivers this classification in a
condensed way.

5.40 get_marginal_distr_pearson

[r type] = get_marginal_distr_pearson (mu, sigma, skew, [Function File]
kurt, 2)

Compute a marginal distribution for given set of uniform random variables with given
mean, standard deviation skewness and kurtosis. The mapping is done via the Pearson
distribution family.
The implementation is based on the R package 'PearsonDS: Pearson Distribution
System’ and the function 'pearsonFitM’ by
Martin Becker and Stefan Kloessner (2013)

Chapter 5: Octave Functions and Scripts 109

R package version 0.97.

URL: http://CRAN.R-project.org/package=PearsonDS
licensed under the GPL >= 2.0

Input and output variables:

mu: mean of marginal distribution (scalar)

sigma: standard deviation of marginal distribution (scalar)
skew: skewness of marginal distribution (scalar)

kurt: kurtosis of marginal distribution (scalar)

Z: uniform distributed random variables (Nx1 vector)

r: OUTPUT: Nx1 vector with random variables distributed according to Pearson
type (vector)

type: OUTPUT: Pearson distribution type (I - VII) (scalar)

The marginal distribution type is chosen according to the input parameters out of
the Pearson Type I-VII distribution family:

Type 0 = normal distribution

Type I = generalization of beta distribution

Type II = symmetric beta distribution

Type III = gamma or chi-squared distribution

Type IV = special distribution, not related to any other distribution
Type V = inverse gamma distribution

Type VI = beta-prime or F distribution

Type VII = Student’s t distribution

See also: discount_factor.

5.41 get_quantile_estimator

[w] = get_quantile_estimator (kernel, scenarios, vec, [Function File]

alpha, bandwidth)

Compute the scenario weights based on various Kernels (e.g. Epanechnikov (ep),
Harrell-Davis (hd) estimator, equal weights for a given bandwidth (ew) or singular
weight on quantile scenario (singular).

Variables:

kernel: Specify Kernel ("hd’, ’ep’, ’ew’, ’singular’)

scenarios: number of total scenarios

vec: scenarios, for which weighs shall be computed

alpha: quantile (e.g. 0.005)

bandwidth: bandwidth around scenario quantile (+- scenarios, ep only)

w: OUTPUT: column vector with scenario weights

Chapter 5: Octave Functions and Scripts 110

5.42 get_readinessclass

[class] = get_readinessclass(score) [Function File]
Map the ND-GAIN readiness score to risk class very low ... very high.

5.43 get_readinessscore

[score] = get_readinessscore(isocode) [Function File]
Map the ISO-2 currency code to ND-GAIN readiness risk score. See
https://gain.nd.edu/our-work /country-index/methodology/ for further information.

5.44 get_srri

m = get_srri (vola_act, horizon, quantile, filepath) [Function File]
Classify portfolio VaR according to SRRI classes and given time horizon and quantile.
Return particular class and plots the data to file in filepath.

See also: .

5.45 get_srri_level

m = get_srri_level (vola, horizon, quantile) [Function File]
Calculate current SRRI level per given vola, time horizon and quantile.

See also: .

5.46 get_srri_simple

m = get_srri (vola_act, horizon, quantile, filepath) [Function File]
Classify portfolio VaR according to SRRI classes and given time horizon and quantile.
Return particular class and plots the data to file in filepath.

See also: .

5.47 get_sub_object

[match_obj ret_code] = get_sub_object(input_struct, [Function File]
input_id)
Return the object contained in a structure matching a given ID. Return code 1 (suc-
cess) and 0 (fail).

5.48 get_sub_struct

[match_struct ret_code] = get_sub_object(input_struct, [Function File]
input_id)
Return the sub-structure contained in a structure matching a given ID. Return code
1 (success) and 0 (fail).

Chapter 5: Octave Functions and Scripts 111

5.49 gini

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

5.50 harrell_davis_weight

[X] = harrell_davis_weight (scenarios, observation, [Function File]
alpha)

Compute the Harrell-Davis (1982) quantile estimator and jacknife standard errors of
quantiles. The quantile estimator is a weighted linear combination or order statistics
in which the order statistics used in traditional nonparametric quantile estimators
are given the greatest weight. In small samples the H-D estimator is more efficient
than traditional ones, and the two methods are asymptotically equivalent. The H-D
estimator is the limit of a bootstrap average as the number of bootstrap resamples
becomes infinitely large.
Variables:

e scenarios: number of total scenarios

e observation: input vector for which HD weights shall be calculated
e alpha: quantile (e.g. 0.005)

e X: OUTPUT: HD-weight corresponding to observation vector

5.51 ind2sub_tril

[r, ¢] = ind2sub_tril (N, idx) [Function File]
Convert a linear index to subscripts of a trinagular matrix.
An example of trinagular matrix linearly indexed follows
N = 4;
A = -repmat (1:N,N,1);
A += repmat (diagind, N,1) - A.';

A = tril(A)

=> A =
1 0 0 0
2 5 0 0
3 6 8 0

4 7 9 10

The following example shows how to convert the linear index ‘6’ in the 4-by-4 matrix
of the example into a subscript.

[r, c] = ind2sub_tril (4, 6)

=r = 2

c= 3

when idx is a row or column matrix of linear indeces then r and ¢ have the same
shape as idx.

See also: vech, ind2sub, sub2ind_tril.

Chapter 5: Octave Functions and Scripts 112

5.52 instrument_valuation

[ret_instr_obj] = instrument_valuation (instr_obj, [Function File]
valuation_date, scenario, instrument_struct, surface_struct,
matrix_struct, curve_struct, index_struct, riskfactor_struct,
path_static, scen_number, first_eval)

Valuation of instruments according to instrument type. The last four variables can
be empty in case of base scenario valuation.
Variables:

instr_obj: instrument, which has to be valuated

e valuation_date: valuation date

e scenario: scenario ['base’,’stress’, MC timestep: e.g. '250d’]

e instrument_struct: structure with all instruments in session

e surface_struct: structure with all surfaces in session

e matrix_struct: structure with all matrizes in session

e curve_struct: structure with all curves in session

e index_struct: structure with all indizes in session

e riskfactor_struct: structure with all riskfactors in session

e para_object: structure with required parameters

e para_object.path_static: OPTIONAL: path to folder with static files
e para_object.scen_number: OPTIONAL: number of scenarios

e para_object.scenario: OPTIONAL: timestep number of days for MC scenar-
ios

e para_object.first_eval: OPTIONAL: boolean, first_eval == 1 means first
evaluation

e ret_instr_obj: RETURN: evaluated instrument object

5.53 integrationtests

integrationtests(path_folder) [Function File]
Call integrationtests of specified functions and return test statistics.
Input parameter: path to folder with testdata. All integration test scripts have to be
hard coded in this script.

5.54 interpolate_curve

[y] = interpolate_curve (nodes, rates, timestep, [Function File]
interp_method, ufr, alpha, method_extrapolation)
Calculate an interpolated rate on a curve for a given timestep.
Supported methods are: linear (default), moneymarket, exponential, loglinear, spline,
smith-wilson, monotone-convex, constant (mapped to previous), previous and next.
A constant extrapolation is assumed, except for smith-wilson, where the ultimate
forward rate will be reached proportional to reversion speed alpha. For all methods

Chapter 5: Octave Functions and Scripts 113

except splines a fast taylormade algorithm is used. For splines see Octave function
interpl for more details. Explanation of Input Parameters of the interpolation curve
function:
Variables:

e nodes: is a 1xN vector with all timesteps of the given curve

e rates: is MxN matrix with curve rates per timestep defined in columns. Each
row contains a specific scenario with different curve structure

e timestep: is a scalar, specifiying the interpolated timestep on vector nodes

e interp_method: OPTIONAL: interpolation method: linear (de-
fault), mm,exponential loglinear,spline, smith-wilson,monotone-
convex,constant,next,previous

e ufr: OPTIONAL: (only used for smith-wilson): ultimate forward rate (default:
last liquid point)

e alpha: OPTIONAL: (only used for smith-wilson): reversion speed to ultimate
forward rate (default: 0.1)

e method_extrapolation: OPTIONAL: extrapolation method
e y: OUTPUT: inter/extrapolated rate

See also: interpl, interp2, interp3, interpn.

5.55 load_correlation_matrix

[mktdata_struct id_failed_cell] = [Function File]
load_mktdata_objects(mktdata_struct, path_mktdata,
file_mktdata, path_output, path_archive, tmp_timestamp,
archive_flag)

Load data from mktdata object specification file and generate objects with parsed
data. Store all objects in provided mktdata struct and return the final struct and a
cell containing the failed mktdata ids.

5.56 load_instruments

[instrument_struct id_failed_cell] = [Function File]
load_instruments(instrument_struct, valuation_date,
path_instruments, file_instruments, path_output, path_archive,
tmp_timestamp, archive_flag)

Load data from instrument specification file and generate objects with parsed data.
Store and return all objects in provided instrument structure. and a cell containing
the failed instrument ids. The order of the final instrument structure is automatically
set that all derivatives (OPT,SWAPT,SYNTH) are coming last.

Chapter 5: Octave Functions and Scripts 114

5.57 load_matrix_objects

[matrix_struct matrix_failed_cell] = [Function File]
load_matrix_objects(matrix_struct, path_mktdata,
input_filename_matrix_index)

Load data from mktdata matrix object specification files and generate a struct with
parsed data. Store all objects in provided struct and return the final struct and a cell
containing the failed matrix ids.

5.58 load_mktdata_objects

[mktdata_struct id_failed_cell] = [Function File]
load_mktdata_objects(mktdata_struct, path_mktdata,
file_mktdata, path_output, path_archive, tmp_timestamp,
archive_flag)

Load data from mktdata object specification file and generate objects with parsed
data. Store all objects in provided mktdata struct and return the final struct and a
cell containing the failed mktdata ids.

5.59 load_parameter

[parameter_struct id_failed_cell] = [Function File]
load_parameter(path_parameter, filename_parameter)
Load data from parameter specification file and generate parameter object with parsed
data.

5.60 load_positions

[portfolio_struct id_failed_cell] = [Function File]
load_positions(portfolio_struct, valuation_date,
path_positions, file_positions, path_output, path_archive,
tmp_timestamp, archive_flag)

Load data from position specification file and generate objects with parsed data. Store
all objects in provided position struct and return the final struct and a cell containing
the failed position ids.

5.61 load_riskfactor_mapping

[mapping_struct rf_failed_cell] = [Function File]
load_riskfactor_mapping(mapping_struct, rf_struct,path_input,
input_filename_mc_mapping)

Load csv file with mapped risk factors for MC scenarios.

Chapter 5: Octave Functions and Scripts 115

5.62 load_riskfactor_scenarios

[riskfactor_struct rf_failed_cell] = [Function File]
load_riskfactor_scenarios(riskfactor_struct, M_struct,
mc_timestep, mc_timestep_days)

Generate MC scenario shock values for risk factor curve objects. Store all MC scenario
shock values in provided struct and return the final struct and a cell containing all
failed risk factor ids.

5.63 load_riskfactor_stresses

[riskfactor_struct rf_failed_cell] = [Function File]
load_riskfactor_stresses(riskfactor_struct,
stresstest_struct)

Generate stresses for risk factor objects (except curves). Store all stresses in provided
struct and return the final struct and a cell containing all failed risk factor ids.

5.64 load_riskfactors

[riskfactor_struct id_failed_cell] = [Function File]
load_riskfactors(riskfactor_struct, valuation_date,
path_riskfactors, file_riskfactors, path_output, path_archive,
tmp_timestamp, archive_flag)

Load data from riskfactor specification file and generate objects with parsed data.
Store all objects in provided riskfactor struct and return the final struct and a cell
containing the failed riskfactor ids.

5.65 load_stresstests

[portfolio_struct id_failed_cell] = [Function File]
load_stresstests(portfolio_struct, valuation_date,
path_stresstests, file_stresstests, path_output, path_archive,
tmp_timestamp, archive_flag)

Load data from stresstest specification file and generate a struct with parsed data.
Store all stresstests in provided struct and return the final struct and a cell containing
the failed position ids.

5.66 load_volacubes

[surface_struct vola_failed_cell] = [Function File]
load_volacubes(surface_struct, path_mktdata,
input_filename_vola_index, input_filename_vola_ir,
input_filename_vola_stochastic)

Load data from mktdata volatility surfaces / cubes specification files and generate a
struct with parsed data. Store all stresstests in provided struct and return the final
struct and a cell containing the failed volatility ids.

Chapter 5: Octave Functions and Scripts 116

5.67 load_yieldcurves

[rf_ir_cur_cell curve_struct] = [Function File]
load_yieldcurves(curve_struct, riskfactor_struct, mc_timestep,
path_output, saving)

Generate curve objects from risk factor objects. Store all curves in provided struct
and return the final struct and a cell containing all interest rate risk factor currency
/ ratings.

5.68 octarisk

octarisk (path_working_folder) [Function File]
Full valuation Monte-Carlo risk calculation framework.
See www.octarisk.com for further information.

5.69 octarisk_gui
i i

5.70 option_asian_levy

value = option_asian_levy (CallPutFlag, S, X, T, r, sigma, [Function File]
divrate, n)
Compute the prices of european type asian average price call or put options according
to Levy (1992) valuation formula. Convert all input parameter into continuously
compounded values with act/365 day count convention.
The implementation is based on following literature:

e "Complete Guide to Option Pricing Formulas", Espen Gaarder Haug, 2nd Edi-
tion, page 190ff.

Variables:
e C(CallPutFlag: Call: "1", Put: "0"
e S: stock price at time 0
e X: strike price
e T: time to maturity in days
e r: annual risk-free interest rate (continuous, act/365)
e sigma: annualized implied volatility
e divrate: dividend rate p.a. (continuous, act/365)

e n: number of averaging dates (defaults to continuous: n = number of days to
maturity)

See also: option_bs, option_asian_vorst90.

Chapter 5: Octave Functions and Scripts 117

5.71 option_asian_vorst90

value = option_asian_vorst90 (CallPutFlag, S, X, T, r, [Function File]
sigma, divrate)
Compute the prices of european type asian continously geometric average price call
or put options according to Kemna and Vorst (1990) valuation formula. Convert
all input parameter into continuously compounded values with act/365 day count
convention. The implementation is based on following literature:

e "Complete Guide to Option Pricing Formulas", Espen Gaarder Haug, 2nd Edi-
tion, page 183ff.

Variables:
e C(CallPutFlag: Call: "1", Put: "0"
e S: stock price at time 0
e X: strike price
e T: time to maturity in days
e r: annual risk-free interest rate (continuous, act/365)
e sigma: annualized implied volatility (continuous, act/365)

e divrate: dividend rate p.a. (continuous, act/365)

See also: option_bs, option_asian_levy.

5.72 option_barrier

[value] = option_barrier (CallPutFlag, UpFlag, S, X, H, T, r, [Function File]
sigma, q, Rebate)
Compute the prices of European call or put out or in barrier options.
Reference: Espen Gaarder Haug, "Complete Guide to Option Pricing Formulas", 2nd
Edition, page 152ff.
Variables:

e C(CallPutFlag: Call: ’1’, Put: 0’

e UpFlag: Up: 'U’, Down: 'D’

e Qutorln: ’out’ or ’in’ barrier option

e S: stock price at time 0

e X: strike price

e H: barrier

e T: time to maturity in days

e r: annual risk-free interest rate (continuously compounded)

e sigma: implied volatility of the stock price measured as annual standard deviation
e (: dividend rate p.a., continously compounded

e Rebate: Rebate of barrier option

Chapter 5: Octave Functions and Scripts 118

5.73 option_binary

[value] = option_binary (CallPutFlag, binary_type, S, X1, [Function File]
X2, T, r, sigma, divrate)

Compute the prices of European Binary call or put options according to Reiner and

Rubinstein (Unscrambling the Binary Code, RISK 4 (October 1991), pp. 75-83)

valuation formulas:

Option type Gap
A gap call option pays the difference (gap) between spot and either one of two strike
values:

C(S,X1,X2,T) = X2*exp(-rT)*N(d)

P(S,X1,X2,T) = X2*exp(-rT)*N(-d)

d = (log(S/X1) + (r - divrate + 0.b5*sigma”2)*T)/(sigma*sqrt(T))

Option type Cash-or-Nothing
A cash or nothing option pays the pre-defined amount X2 if the value is larger than
the strike X1 (call option) or lower than the strike X1(put option):

C(S,X1,X2,T) = N(d)*X2*exp(-rT)

P(S,X1,X2,T) = N(-d)*X2*exp(-rT)

d = (log(S/X1) + (r - divrate - 0.5*sigma~2)*T)/(sigma*sqrt(T))

Option type Asset-or-Nothing
An asset or nothing option pays the future spot value S if the value is larger than the
strike X1(call option) or lower than the strike X1 (put option):

C(8,X1,T) = S*N(d)*exp(-divratexT)

P(S,X1,T) = S*N(-d)*exp(-divratexT)

d = (Log(S/X1) + (r - divrate + 0.5*sigma”2)*T)/(sigma*sqrt(T))

Option type Supershare
A supershare option has a payoff, if the future spot values lies between an lower bound
X1 and upper bound X2, and is zero otherwise:
Value(S,X1,X2,T) = (Sxexp(-divrate*T)/X1) * (N(d1) - N(d2))
dl = (log(S/X1) + (r - divrate + 0.5*sigma”2)*T)/(sigma*sqrt(T))
d2 = (log(S/X2) + (r - divrate + 0.5*sigma”2)*T)/(sigma*sqrt(T))

All formulas are taken from Haug, Complete Guide to Option Pricing Formulas, 2nd
edition, page 174ff.

Variables:
e C(CallPutFlag: Call: '1’, Put: 0’
e binary_type: can be 'gap’,’cash’,’asset’
e S: stock price at time 0
e X1I: strike price (lower bound for supershare or gap options)

e X2: payoff strike price (used for Gap and cash options, upper bound of supershare
options)

Chapter 5: Octave Functions and Scripts 119

e T: time to maturity in days
e r: annual risk-free interest rate (continuously compounded, act/365)
e sigma: implied volatility of the stock price measured as annual standard deviation

e divrate: dividend rate p.a., continously compounded

See also: option_willowtree, option_bs.

5.74 option_bjsten

[value] = option_bjsten (CallPutFlag, S, X, T, r, sigma, [Function File]
divrate)
Calculate the option price of an American call or put option stocks, futures, and
currencies. The approximation method by Bjerksund and Stensland is used.

The Octave implementation is based on a R function implemented by Diethelm
Whuertz Rmetrics - Pricing and Evaluating Basic Options, Date 2015-11-09 Version
3022.85

References: Haug E.G., The Complete Guide to Option Pricing Formulas
Example taken from Reference:
price = option_bjsten(1,42,40,0.75%365,0.04,0.35,0.08)
price = 5.2704
Variables:
e C(CallPutFlag: Call: ’1’, Put: 0’

S: stock price at time 0

e X: strike price

e T: time to maturity in days

e r: annual risk-free interest rate (continuously compounded)

e sigma: implied volatility of the stock price measured as annual standard deviation

e divrate: dividend rate p.a., continously compounded

See also: option_willowtree, option_bs.

5.75 option_bond_hw

[value] = option_bond_hw [Function File]
(value_type,bond,curve,callschedule,putschedule)
Compute the value of a put or call bond option using Hull-White Tree model.
This script is a wrapper for the function pricing_callable_bond_cpp and handles all
input and ouput data. Input data: value type, bond instrument, curve instrument,
call and put schedule. References:

e Hull, Options, Futures and other derivatives, 7th Edition
See also: pricing_callable_bond_cpp.

Chapter 5: Octave Functions and Scripts 120

5.76 option_bs

[value delta gamma vega theta rho omegal] = option_bs [Function File]
(CallPutFlag, S, X, T, r, sigma, divrate)
Compute the prices of european call or put options according to Black-Scholes valu-
ation formula:

C(S,T) = N(d_1)*S - N(d_2)*X*exp(-rT)

P(S,T) = N(-d_2)*X*exp(-rT) - N(-d_1)*S

dl = (log(S/X) + (r + 0.5*sigma"2)*T)/(sigma*sqrt(T))

d2 = d1 - sigma*sqrt(T)
The Greeks are also computed (delta, gamma, vega, theta, rho, omega) by their closed
form solution.
Parallel computation for column vectors of S, X,r and sigma is possible.

Variables:
e C(CallPutFlag: Call: ’1’, Put: 0’
e S: stock price at time 0
e X: strike price
e T: time to maturity in days
e r: annual risk-free interest rate (continuously compounded, act/365)

e sigma: implied volatility of the stock price measured as annual standard deviation

divrate: dividend rate p.a., continously compounded

See also: option_willowtree, swaption_black76.

5.77 option_lookback

[value] = option_lookback (CallPutFlag, lookback_type, S, [Function File]
X1, X2, T, r, sigma, divrate)
Compute the prices of European Lookback call or put options of type floating strike
or fixed strike.

Floating Strike options:

A floating strike lookback call / put gives you the right to buy / sell the the under-
lying security at the lowest / highest price observed during options lifetime. Pricing
according to Goldman, Sosin and Gatto (1979) ("Path dependent options: Buy at
the Low Sell at the High", Journal of Finance, 34(5), 1111- 1127) valuation formulas.

Fixed Strike options:

A fixed strike lookback call / put pays out the maximum of the difference between
the highed observed price and the strike and 0 (call option) or the maximum of the
difference between strike and lowest observed price and 0 (put option). Pricing ac-
cording to Conze and Viswanathan (1991) ("Path dependent options: The Case of
Lookback Options", Journal of Finance, 36, 1893 - 1907) formulas.

Chapter 5: Octave Functions and Scripts 121

All formulas are taken from Haug, Complete Guide to Option Pricing Formulas, 2nd
edition, page 141ff.

Variables:
e C(CallPutFlag: Call: ’1’, Put: 0’
e Jookback_type: can be ’floating_strike’,’fixed _strike’
e S: stock price at time 0
e X1I: strike price (or S_min or S_max for fixed strike)
e X2: payoff strike of fixed strike option
e T: time to maturity in days
e r: annual risk-free interest rate (continuously compounded, act/365)
e sigma: implied volatility of the stock price measured as annual standard deviation

e divrate: dividend rate p.a., continously compounded

See also: option_binary, option_bs.

5.78 option_willowtree

value = option_willowtree (CallPutFlag, AmericanFlag, S, [Function File]
X, T, r, sigma, dividend, dk, nodes, path_static)
Computes the price of european or american equity options according to the willow
tree model.
The willow tree approach provides a fast and accurate way of calculating option prices.
This implementation of the willow tree concept is based on following literature:

e 'Willow Tree’, Andy C.T. Ho, Master thesis, May 2000

e 'Willow Power: Optimizing Derivative Pricing Trees’, Michael Curran, ALGO
RESEARCH QUARTERLY, Vol. 4, No. 4, December 2001

Example of an American Call Option with continuous dividends:
(365 days to maturity, vector with different spot prices and volatilities,
strike = 8, r = 0.06, dividend = 0.05, timestep 5 days, 20 nodes): option_
willowtree(1,1,[7;8;9;7;8;9]1,8,365,0.06,[0.2;0.2;0.2;0.3;0.3;0.31,0.05,5,20)0
Variables:

e (CallPutFlag: Call: '1’, Put: '’

e AmericanFlag: American option: ’1’, European Option: ’0’

e S: stock price at time 0

e X: strike price

e T: time in days to maturity

e r: annual risk-free interest rate (cont, act/365)

e sigma: implied volatility of the stock price

e dividend: continuous dividend yield, act/365

o dk: size of timesteps for valuation points (default: 5 days)

e nodes: number of nodes for willow tree setup. Number of nodes must be in list
[10,15,20,30,40,50]. These vectors are optimized by Currans Method to fulfill
variance constraint (default: 20)

Chapter 5: Octave Functions and Scripts 122

e path_static: Optional: path to static files (required for saving Willowtree tran-
sition probabilities)

See also: option_binomial, option_bs, option_exotic_mc.

5.79 perform_rf_stat_tests

[retcode] = per- [Function File]
form_rf_stat_tests(riskfactor_cell,riskfactor_struct,RndMat,distr_type)l}
Perform statistical tests on risk factor shock vector. Return 1 if all tests pass, return
255 if at least one test fails.

5.80 plot_AA _piecharts

Position Custodian distribution

5.81 plot_HHI _piecharts

Position Custodian distribution

5.82 plot_hist_var

fill variables

5.83 plot_hist_var_simple

fill variables

5.84 plot_sensitivities

plot asset and liability

5.85 plot_solvencyratio

m = plot_solvencyratio (vola_act, filepath) [Function File]
Plot solvency ratio and show relationship to safety zones.

See also: .

5.86 pricing_forward

[theo_value] = pricing_forward (valuation_date, [Function File]
forward, discount_curve_object, underlying _object,
und_curve_object,fx)

Compute the theoretical value and price of FX, equity and bond forwards and futures.

Input and output variables:
e valuation_date: valuation date

e forward: forward object

Chapter 5: Octave Functions and Scripts 123

e discount_curve_object: discount curve for forward
e underlying_object: underlying object of forward
e und_curve_object: discount curve object of underlying object

e fx: fx object with currency conversion rate between forward and underlying
currency

See also: timefactor, discount_factor, convert_curve_rates.

5.87 pricing_npv

[npv MacDur Convexity MonDur Convexity_alt] = [Function File]
pricing npv(valuation_date, cashflow_dates, cashflow_values,
spread_constant, discount_nodes, discount_rates, basis,
comp_type, comp_freq, interp_discount, comp_type_curve,
basis_curve, comp_freq_curve, sensi_flag)

Compute the net present value, Macaulay Duration, Convexity and Monetary dura-
tion of a given cash flow pattern according to a given discount curve and day count
convention etc.

Pre-requirements:

e installed octave financial package

e custom functions timefactor, discount_factor, interpolate_curve, and
convert_curve_rates

Input and output variables:

e valuation_date: valuation date (preferred as datenum)

e cashflow_dates: cashflow_dates is a 1xN vector with all timesteps of the cash flow
pattern

e cashflow_values: cashflow_values is a MxN matrix with cash flow pattern.

e spread_constant: a constant spread added to the total yield extracted from dis-
count curve and spread curve (can be used to spread over yield)

e discount_nodes: discount_nodes is a 1xN vector with all timesteps of the given
curve

e discount_rates: discount_rates is a MxN matrix with discount curve rates defined
in columns. Each row contains a specific scenario with different curve structure

e basis: OPTIONAL: day-count convention of instrument (either basis number
between 1 and 11, or specified as string (act/365 etc.)

e comp_type: OPTIONAL: compounding type of instrument (disc, cont, simple)

e comp-_freq: OPTIONAL: compounding frequency of instrument (1,2,3,4,6,12 pay-
ments per year)

e comp_type_curve: OPTIONAL: compounding type of curve
e basis_curve: OPTIONAL: day-count convention of curve

e comp_freq_curve: OPTIONAL: compounding frequency of curve

Chapter 5: Octave Functions and Scripts 124

e interp_discount: OPTIONAL: interpolation method of discount curve

e sensi_flag: OPTIONAL: boolean variable (calculate sensitivities) (default: lin-
ear)

e npv: returns a Mx1 vector with all net present values per scenario
e MacDur: returns a Mx1 vector with all Macaulay durations

e Convexity: returns a Mx1 vector with all convexities

e MonDur: returns a Mx1 vector with all Monetary durations

o Convexity_alt: returns a Mx1 vector with Convexity (alternative method)

See also: timefactor, discount_factor, interpolate_curve, convert_curve_rates.

5.88 print_class2dot

get all classes in folder and extract all Instrument classes

5.89 profiler_analysis

profiler_analysis(script_name,argument,depth) [Function File]
Call profiler for specified script and argument and return detailed statistics. Input
variables:

e script_name: name of script as string [required|
e argument: first and only argument of script [required]

e depth: number of sub-functions to analyse [optional, default = 10]

5.90 replacement_script

replacement_script(replacement_list) [Function File]
Matlab Adaption of Octarisk Code Input files phrases to replace: wordlist_matlab.csv
Format:(String;Replacement String;File) Input files for replacement: Automatical de-
tection of all m.files in directory for replacement Output data: Rewritten m.files

See also: adapt_matlab.

5.91 return_checked_input

[retvall = return_checked_input (obj, val, prop, type) [Function File]
Return value with validated input values according to value type date, char, numeric,
and boolean or special treatment for scenario values. Used for storing correct field
values for classes or structs. The function itself is divided into two parts: special
attributes with taylor made validation checks are used for type ’special’, while a
generic approach according to different types are performed in the second part.

Chapter 5: Octave Functions and Scripts 125

5.92 rollout_retail_cashflows

[ret_dates ret_values accrued_interest] = [Function File]
rollout_retail_cashflows (valuation_date, value_type,
instrument, ref_curve, surface, riskfactor)

Compute cash flow dates and cash flows values, accrued interests and last coupon
date for retail products.

See also: timefactor, discount_factor, get_forward_rate, interpolate_curve.

5.93 rollout_structured_cashflows

[ret_dates ret_values accrued_interest] = [Function File]
rollout_structured_cashflows (valuation_date, value_type,
instrument, ref_curve, surface, riskfactor)

Compute cash flow dates and cash flows values, accrued interests and last coupon date
for fixed rate bonds, floating rate notes, amortizing bonds, zero coupon bonds and
structured products like caps and floors, CM Swaps, capitalized or averaging CMS
floaters or inflation linked bonds.

See also: timefactor, discount_factor, get_forward_rate, interpolate_curve.

5.94 save_objects

[riskfactor_struct rf_failed_cell] = [Function File]
save_objects(path_output, riskfactor_struct,
instrument_struct, portfolio_struct, stresstest_struct)

Save provided structs for riskfactors, instruments, positions and stresstests.

5.95 scenario_generation_MC

[R distr_type Z] = scenario_generation_MC (corr_matrix, [Function File]
P, mc, copulatype, nu, time_horizon, path_static, para_object)
Compute correlated random numbers according to Gaussian or Student-t copulas and
arbitrary marginal distributions within the Pearson distribution system.

Variables:
e corr_matrix: Correlation matrix

e P: matrix with statistical parameter (columns: risk factors, rows: four moments
of distribution (mean, std, skew, kurt)

e mc: number of MC scenarios

e copulatype: t, Gaussian or Frank, Gumbel, Clayton (FGC)

e nu: degree of freedom (scalar for t, scalar or vector for FGC)
e time_horizon: time horizon in days (assumed 256 days in year)
e path_static: path to static files (e.g. random numbers)

e para_object: object with parameters (stable_seed, use_sobol,
sobol_seed, path_working_folder, path_sobol_direction_number, file-
name_sobol_direction_number,frob_norm_limit)

Chapter 5: Octave Functions and Scripts 126

e R: OUTPUT: scenario matrix (rows: scenarios, cols: risk factors)
e distr_type: OUTPUT: cell with marginal distribution types

e Z: OUTPUT: copula dependence (uniform marginal distributions) according to
Pearson

See also: get_marginal_distr_pearson, mvnrnd, normcdf, mvtrnd ,tcdf.

5.96 solvency2_reporting

solvency2_reporting (path_working_folder) [Function File]
Solvency 2 reporting for assets according to the Tripartite v4.0 standard. Analytics
section (Outputs 90-94) and SCR contribution sections (Output 97-105) are calculated
and accordingly filled.
Further fields with mandatory / conditional information can be set in asset input in
positions.csv (see example files in /octarisk/sii_stdmodel_folder/input)
SII SCR stress definitions can be adjusted under /octarisk/sii_stdmodel_folder/input/stresstests.csvljj
See www.octarisk.com for further information.

5.97 struct2obj

[obj] = struct2obj(s,verbose) [Function File]
Converting structs into objects. Therefore the constructors of hard-coded classes are
used to invoke objects and to set all structures attributes. The final object obj is
returned. The optional verbose parameter sets the logging level.

Variables:

e s: input struct containing field type and class specific fields

e verbose: flag for providing additional information about conversion (default:
false)

e obj: OUTPUT: objects

5.98 swaption_bachelier

[SwaptionBachelierValue] = swaption_bachelier [Function File]
(PayerReceiverFlag, F, X, T, sigma, Annuity)
Compute the price of european interest rate swaptions according to Bachelier Pricing
Functions assuming normal-distributed volatilities.

C = ((F-X)*N(d1) + sigma*sqrt(T)*n(dl))*exp(-rT) * multiplicator(m,tau)]]

dl = (F-X)/(sigma*sqrt(T))
N1 = 0.5*%(1+erf ([-]d1/sqrt(2)))
nl = exp(- dl "2 /2)/sqrt(2*pi)

C or [P] = sigma*sqrt(T)*Annuity*([-]d1*Ni+n1l)

Variables:

e PayerReceiverFlag: Call / Payer '1’ (pay fixed) or Put / Receiver ’0’ (receive
fixed, pay floating) swaption

Chapter 5: Octave Functions and Scripts 127

e [forward rate of underlying interest rate (forward in T years for tau years)

X: strike rate

e T: time in days to maturity

e sigma: implied volatility of the interest rate measured as annual standard devi-
ation

e Annuity: Annuity (Sum of discount factors for underlying term dates)

See also: option_bs.

5.99 swaption_black76

[SwaptionB76Value] = swaption_black76 [Function File]
(PayerReceiverFlag, F, X, T, r, sigma, m, tau)
Compute the price of european interest rate swaptions according to Black76 pricing
functions.
C = (F*#N(d1) - X*N(d2))*exp(-rT) * multiplicator(m,tau)
P = (X*N(-d2) - F*N(-d1))*exp(-rT) * multiplicator(m,tau)

dl = (log(8/X) + (r + 0.5*sigma~2)*T)/(sigma*sqrt(T))
d2 = d1 - sigma*sqrt(T)
Variables:

e PayerReceiverFlag: Call / Payer '1’ (pay fixed) or Put / Receiver ’0’ (receive
fixed, pay floating) swaption

e F: forward rate of underlying interest rate (forward in T years for tau years)
e X: strike rate

e T: time in days to maturity

e r: annual risk-free interest rate (continuously compounded)

e sigma: implied volatility of the interest rate measured as annual standard devi-
ation

e m: Number of Payments per year (m = 2 -> semi-annual) (continuous compound-
ing is assumed)

e tau: Tenor of underlying swap in Years

See also: swaption_bachelier.

5.100 swaption_underlyings

[SwaptionValue] = swaption_underlyings [Function File]
(PayerReceiverFlag, F, X, T, r, sigma, m, tau)
Compute the price of european interest rate swaptions according to Black76 or Normal
pricing functions using underlying fixed and floating legs.

See also: swaption_bachelier, swaption_black76.

Chapter 5: Octave Functions and Scripts 128

5.101 test_io

[success_tests total_tests] = [Function File]
test_io(path_testing folder)

Perform integration tests for all functions which rely on input and output data. The
functions have to be hard coded in this script and rely on validated output data. The
storage and parsing process of objects is a little bit tricky. At first, all objects have
to converted into structed and stored to a file. After the structs from the file have
been parsed, all structe have to converted back again into objects using constructor
and set methods. See section B.2 for an example.

5.102 test_oct_files

this is only a dummy function for containing all the oct file testing suites.

5.103 test_pos_aggregation

[instrument _struct, curve_struct, index_struct, surface_struct, para_object, matrix_struct,
riskfactor_struct, ... portfolio_struct, stresstest_struct, mc_var_shock_pct, port_obj_struct|
= octarisk(’/home/schinzilord /Dokumente/Programmierung/octarisk /working_folder’);

5.104 testriskfree

toco: append instrument to private portfolio and use these tests for doc_instrument inte-
gration tests

5.105 timefactor

[tf dip dib] = timefactor(dl, d2, basis) [Function File]
Compute the time factor for a specific time period and day count basis.
Depending on day count basis, the time factor is evaluated as (days in period) / (days
in year)
Input and output variables:
e dI: number of days until first date (scalar)
e d2: number of days until second date (scalar)
e basis: day-count basis (scalar or string)
e df: OUTPUT: discount factor (scalar)
e dip: OUTPUT: days in period (nominator of time factor) (scalar)

e dib: OUTPUT: days in base (denominator of time factor) (scalar)

See also: discount_factor, yeardays, get_basis.

5.106 unittests

unittests() [Function File]
Call unittests of specified functions and return test statistics.

Chapter 5: Octave Functions and Scripts 129

5.107 unvech

m = unvech (v, scale) [Function File]
Performs the reverse of vech on the vector v.
Given a Nx1 array v describing the lower triangular part of a matrix (as obtained
from vech), it returns the full matrix.
The upper triangular part of the matrix will be multiplied by scale such that 1 and
-1 can be used for symmetric and antisymmetric matrix respectively. scale must be
a scalar and defaults to 1.

See also: vech, ind2sub, sub2ind_tril.

5.108 update_mktdata_objects

[index_struct curve_struct id_failed_cell] = [Function File]
update_mktdata_objects(mktdata_struct, index_struct,
riskfactor_struct, curve_struct)

Update all market data objects with scenario dependent risk factor and curve shocks.
Return index struct and curve struct with scenario dependent absolute values.
Calculate reciprocal FX conversion factors for all exchange rate market objects
(e.g. FX_USDEUR = 1 ./ FX_USDEUR). During aggregation and instrument
currency conversion the appropriate FX exchange rate is always chosen by
FX_BasecurrencyForeigncurrency) Volatility surfaces and cube MC and stress shocks
are generated in script load_volacubes.m

5.109 betainc_lentz_vec

f = betainc_lentz_vec(y,a,b) [Loadable Function]
Continued fraction for incomplete gamma function (vectorized version). This function
should be called from function batainc_vec.m only.

Input and output variables:

e x: x value to calcluate cumulative beta distribution
e a: first shape parameter

e b: second shape parameter

e f: return value of beta cdf at x for a and b

5.110 calc_sobol_cpp

retvec = calc_sobol_cpp(scen, [Loadable Function]
dim, directionfile) Calculate Sobol numbers for scen rows and dim columns for a
given file with direction numbers directionfile. Implementation uses code of Frances Y.
Kuo and Stephen Joe, 2008. taken from http://web.maths.unsw.edu.au/~fkuo/sobol/
License included in source code.

5.111 calc_vola_basket_cpp

Volatility = calc_vola_basket_cpp(M1, [Loadable Function]
TF, exponents, prefactors)

Chapter 5: Octave Functions and Scripts 130

Compute the diversified volatility of a basket of securities.
This function uses long double precision to handle large volatilities.
Input and output variables:

e MI: M1 of basket vola function

e TF': time factor in years

e exponents: Matrix with exponents (in columns) and different scenarios in rows
e prefactors: Matrix with prefactors (in columns) and different scenarios in rows
e vola: OUTPUT: basket volatility (vector)

5.112 calculate_npv_cpp

retvec = calculate_npv_cpp(values,df) [Loadable Function]
Calculate the sum of product of two matrizes along rows.
Input and output variables:

e values: Matrix or vector of values
e df: Matrix of discount factors

e retvec: Result: column vector with sums of product of each columns

5.113 gammainc_lentz_vec

f = gammainc_lentz_vec(x,a) [Loadable Function]
Continued fraction for incomplete gamma function (vectorized version). This function
should be called from function gammainc_vec.m only.

Input and output variables:

e x: x value to calculate cumulative gamma distribution
e a: shape parameter

e f: return value of gamma cdf at x for a

5.114 interpolate_cubestruct

retvec = interpolate_cubestruct(struct,xx, yy, zz) [Loadable Function]
Interpolate cube values from all elements of an structure array of all cube fieldnames.
This function should be called from getValue method of Surface class which handles
all input and ouput data. Please note that axis values needs to be sorted.
Input and output variables:

e struct: structure with the following fields (struct)
e id: scenario ID (string)
e cube: volatility cube (one volatility value per x,y,z coordinate) (NDArray)
e x_axis: sorted vector of x-axis values (NDArray)
e y_axis: sorted vector of y-axis values (NDArray)
e z_axis: sorted vector of z-axis values (NDArray)

e xx: x coordinate used for interpolation of cube value

Chapter 5: Octave Functions and Scripts 131

e yy: y coordinate used for interpolation of cube value
e zz: 7 coordinate used for interpolation of cube value (scalar or vector)

e retvec: return vector of scenario dependent interpolated volatility values (NDAr-
ray)

5.115 interpolate_curve_vectorized

retvec = [Loadable Function]
interpolate_curve_vectorized(nodes,rates,, timesteps)
Linear interpolation of a vector of timesteps for all scenarios of a rate matrix.
This function should be called from interpolate_curve only which handles all input
and ouput data.
Input and output variables:

e nodes: Column vector of nodes
e rates: Matrix of column vector with rates (scenario = rows)

e timesteps: Column vector of timesteps to interpolate.

retvec: Result: Matrix with interpolated rates (rows) for each timestep (column)

5.116 interpolate_curve_vectorized_mc

retvec = [Loadable Function]
interpolate_curve_vectorized_mc(nodes,rates,timestep)
Linear interpolation of a single timestep for all scenarios of a rate matrix.
This function should be called from interpolate_curve only which handles all input
and ouput data.
Input and output variables:

e nodes: row vector of nodes
e rates: Matrix of column vector with rates (scenario = rows)
e timestep: Timestep to interpolate (integer)

e retvec: Result: Matrix with interpolated rates (rows) for each timestep (column)

5.117 interpolate_curvestruct

retvec = interpolate_curvestruct(struct,xx) [Loadable Function]
Interpolate curve values from all elements of an structure array of all cube fieldnames.
This function should be called from getValue method of Surface class which handles
all input and ouput data. Please note that axis values needs to be sorted.
Input and output variables:

e struct: structure with the following fields (struct)
e id: scenario ID (string)
e cube: curve cube (one curve value per x coordinate) (NDArray)
e x_axis: sorted vector of x-axis values (NDArray)

e xx: x coordinate used for interpolation of cube value (scalar or vector)

Chapter 5: Octave Functions and Scripts 132

e retvec: return vector of scenario dependent interpolated volatility values (NDAr-
ray)

5.118 interpolate_surfacestruct

retvec = interpolate_surfacestruct(struct,xx, yy) [Loadable Function]
Interpolate surface values from all elements of an structure array of all surface field-
names.

This function should be called from getValue method of Surface class which handles
all input and ouput data. Please note that axis values needs to be sorted.
Input and output variables:

e struct: structure with the following fields (struct)
e id: scenario ID (string)
e surface: volatility surface (one volatility value per x,y,z coordinate) (NDAr-

ray)
e x_axis: sorted vector of x-axis values (NDArray)

e y_axis: sorted vector of y-axis values (NDArray)
e xx: x coordinate used for interpolation of surface value
e yy: y coordinate used for interpolation of surface value (scalar or vector)
e retvec: return vector of scenario dependent interpolated volatility values (NDAr-
ray)

5.119 optimize_basket_forwardprice

FS1 = optimize_basket_forwardprice(weights, [Loadable Function]
S, riskfree, r, sigma, K, Ibound, ubound) , maxiter)
Compute the optimized forward price of basket options according to Beisser et al.
This function is called by the script pricing_basket_options.
Published in: ’Pricing of arithmetic basket options by conditioning’, G. Deelstra et
al., Insurance: Mathematics and Economics 34 (2004) Pages 55ff
This function solves equation (33) of aforementioned paper for FSI(K) with bisection
method for root finding.
Input and output variables:

o weights: weights of instruments in basket (vector)
e S: instrument spot prices (matrix: scenarios (rows), instruments (columns))
e riskfree: riskfree interest rate (vector)

o r: Weighted correlation coefficients (matrix: scenarios (rows), instruments
(columns))

e sigma: instruments volatilities (matrix: scenarios (rows), instruments (columns))
e K: option strike values (vector)

e Ibound: lower bound for root finding (suggestion: 0) (scalar)

e ubound: upper bound for root finding (suggestion: 1) (scalar)

e maxiter: maximum iterations in bisection method (set to 100) (scalar)

Chapter 5: Octave Functions and Scripts 133

limit: optimization limit for root finding (scalar)
FSI: OUTPUT: Forward price (vector)

5.120 pricing_callable_bond_cpp

Put Call = pricing_callable_bond_cpp(T, [Loadable Function]
N, alpha, sigma_vec, cf_-dates, cf-matrix, R_matrix, dt, Timevec, notional, Mat, K)
Compute the put or call value of a bond option based on the Hull-White Tree.

This function should be called from Octave script option_bond_hw.m which handles
all input and ouput data. References:

Hull, Options, Futures and other derivatives, 6th Edition

Clewlow and Strickland, Implementing Derivatives Models, Page 255ff,. Chapter
9: Constructing Trinomial Trees for the short rate, 1st Edition

Input and output variables:

call_flag: Boolean (true: call option, false: put option

T: Bond Maturity in years

N: Number of cash flow dates / call dates

alpha: mean reversion parameter of Hull-White model
sigma_vec: scenario dependent volatility

cf_dates: row vector with cash flow dates (in days)

cf_matrix: scenario dependent cash flow values

R_matrix: scenario dependent discount rates for each cf date)
dt: row vector with time steps between call dates

Timevec: row vector with timesteps of cf_dates and a year after
notional: bond notional)

Mat: cash flow index of options maturity date

K: Strike value

accr_int_mat: scenario dependent interest cash flow values
american: Boolean (true: american option, false: european option
Put: OUTPUT: Putprices (vector)

Call: OUTPUT: Callprices (vector)

5.121 pricing_option_cpp

OptionVec = pricing_option_cpp(option_type, call_flag, [Loadable Function]

S_vec, X_vec, T_vec, r_vec, sigma_vec, divrate_vec, n)

Compute the put or call value of different equity options.

This function should be called from Option class which handles all input and ouput
data.

Input and output variables:

option_type: Integer: Sets pricing engine (1=EU(BS),2=AM(CRR),3=ASTAN
ARITHMETIC(MC))

134

e call_flag: Boolean: (true: call option, false: put option
e S_vec: Double: Spot prices (either scalar or vector of length m)
e X_vec: Double: Strike prices (either scalar or vector of length m)

e T_vec: Double: Time to maturity (days, act/365) (either scalar or vector of
length m)

e r_vec: Double: riskfree rate (either scalar or vector of length m)
e sigma_vec: Double: volatility (annualized,act/365) (either scalar or vector of
length m)
e divrate_vec: Double: dividend yield (cont,act/365) (either scalar or vector of
length m)
e 1n: Integer: number of tree steps (AM) or number of MC scenarios (ASIAN)
e OptionVec: Double: OUTPUT: Option prices (columnn vector)
Example Call:
retvec = pricing_option_cpp(l,false, [10000;9000;11000],11000,365,0.01,[0.2;0.025;
retvec =
1351.5596280726359

1890.5481712408509
83.4751762658461

Index

A

Aggregationc. il 16

B

Brownian motion 11

C

Class diagramc.oiiiiiiienneenn... 26
Classes, Octave octarisk Classes, Index......... 38
Cox-Ingersoll-Ross and Heston model 11

D

Developer guide, Developer guide 25

E

ES, Expected shortfall 9

F

Featureso 2
Financial models, Theory of.................... 11
Full valuation approach 14
Function adapt_matlab...................... ... 92
Function addtodatefinancial.................... 92
Function aggregate_positions................... 92
Function any2str..........o oL 93
Function betainc_lentz_vec.................... 129
Function betainc_vec............ 93
Function betainv_vec............... 94
Function Bond.help........ ... L 82
Function calc HHI, 94
Function calc_sobol_cpp....................... 129
Function calc_vola_basket_cpp 129
Function calcConvexityAdjustment............. 94
Function calculate_npv_cpp................... 130
Function calibrate_evt_gpd..................... 94
Function calibrate_generic...................... 95
Function CapFloor.help........................ 78
Function Cash.help 54
Function compile_oct_files...................... 95
Function convert_curve_rates................... 95
Function correct_correlation_matrix............ 96
Function Curve.help ... 41
Function Debt.helpoooo oL 55
Function discount_factor....................... 97
Function doc_instrument....................... 97
Function doc_riskfactor 97
Function epanechnikov_weight.................. 98
Function estimate_parameter................... 99

Function fmincon 99

135

Function Forward.help.................. 45
Function gammainc.............. 100
Function gammainc_lentz_vec................. 130
Function gammaincinv........................ 100
Function generate_willowtree.................. 101
Function get_basis............ ...t 103
Function get_basket_volatility................. 104
Function get_bond_tf rates.................... 104
Function get_cms_rate_hagan 105
Function get_cms_rate_hull.................... 106
Function get_credit_rating 106
Function get_dependencies.................... 106
Function get_documentation.................. 106
Function get_documentation_classes........... 107
Function get_esg_rating....................... 107
Function get_forward_rate 107
Function get_FX_rate......................... 103
Function get_gpd_var...................... ... 108
Function get_informclass...................... 108
Function get_informscore...................... 108
Function get_marginal _distr_pearson.......... 108
Function get_quantile_estimator............... 109
Function get_readinessclass 110
Function get_readinessscore 110
Function get_srri............... ..ot 110
Function get_srri_level 110
Function get_srri_simple 110
Function get_sub_object 110
Function get_sub_struct....................... 110
Function getCapFloorRate.................... 101
Function

getFlooredSpotByFlooringForwardCurve 102
Function gini 111
Function harrell_davis_weight 111
Function ind2sub_tril 111
Function Index.help....................oo i 65
Function Instrument.help 38
Function instrument_valuation................ 112
Function integrationtests...................... 112
Function interpolate_cubestruct............... 130
Function interpolate_curve.................... 112
Function interpolate_curve_vectorized 131
Function interpolate_curve_vectorized_mc 131
Function interpolate_curvestruct 131
Function interpolate_surfacestruct............. 132
Function load_correlation_matrix.............. 113
Function load_instruments.................... 113
Function load_matrix_objects 114
Function load_mktdata_objects 114
Function load_parameter...................... 114
Function load_positions....................... 114
Function load_riskfactor_mapping............. 114
Function load_riskfactor_scenarios............. 115
Function load_riskfactor_stresses.............. 115
Function load_riskfactors...................... 115

Index

Function load_stresstests...................... 115
Function load_volacubes 115
Function load_yieldcurves..................... 116
Function Matrix.help oL 39
Function octarisk o 116
Function octarisk_gui......................... 116
Function optimize_basket_forwardprice........ 132
Function Option.help 48
Function option_asian_levy.................... 116
Function option_asian_vorst90 117
Function option_barrier....................... 117
Function option_binary 118
Function option_bjsten........................ 119
Function option_bond_hw..................... 119
Function option_bs 120
Function option_lookback 120
Function option_willowtree.................... 121
Function perform_rf_stat_tests................ 122
Function plot_AA_piecharts................... 122
Function plot_HHI piecharts.................. 122
Function plot_hist_var........................ 122
Function plot_hist_var_simple................. 122
Function plot_sensitivities..................... 122
Function plot_solvencyratio................... 122
Function Position.help 86
Function pricing_callable_bond_cpp 133
Function pricing forward...................... 122
Function pricing npv 123
Function pricing_option_cpp 133
Function print_class2dot 124
Function profiler_analysis 124
Function replacement_script................... 124
Function Retailhelp 89
Function return_checked_input................ 124
Function Riskfactor.help....................... 62
Function rollout_retail_cashflows.............. 125
Function rollout_structured_cashflows......... 125
Function save_objects............. 125
Function scenario_generation MC............. 125
Function Sensitivity.help....................... 57
Function solvency2_reporting 126
Function Stochastic.help................. 76
Function struct2obj...........o L 126
Function Surface.help....................... ... 70
Function Swaption.help........................ 72
Function swaption_bachelier 126
Function swaption_black76.................... 127
Function swaption_underlyings................ 127
Function Synthetic.help........... 67
Function test_io L 128
Function test_oct_files 128
Function test_pos_aggregation................. 128
Function testriskfree............. 128
Function timefactor........................... 128
Function unittests oL 128

Function unvech 129

136

Function update_mktdata_objects............. 129
Functions, Octave Functions and

Scripts, Index. 92
G
Geometric Brownian motion 11
Graphical user interface........................ 24
I
Implementation workflow 28
Input files ... 29
Input, Correlation file................ 36
Input, Instruments file......................... 31
Input, Marketdata objects file.................. 33
Input, Positions file.................... 30
Input, Risk factors file......... 29
Input, Stress test file............. 32
Input, volatility surface file..................... 32
Instrument valuation.................. 13
M
Market risk measures 9
Market Risk, Introduction....................... 8
Market Risk, Quantifying 4
O
Ornstein-Uhlenbeck process.................... 10
Output files. ... 37
P
Parameter estimation................. 11
Parameter Monte-Carlo Simulation............. 12
Parameter Stress testing 12
Prerequisites............ooo i 3
Pricing, Bond instruments 15
Pricing, Cap and Floor instruments............ 16
Pricing, Cash flow instruments................. 15
Pricing, Forwards and Futures 15
Pricing, Options ...t 14
Pricing, Swaptions............... ... ol 15
R
Random number generation..................... 9
Reporting. ... 16
Retail instrumentso i 16
Risk management, Introduction 4

Index

S

Scenario generation 9
Sensitivity approach 13
Square-root diffusion process................... 10
Stochastic instruments......................... 16
Stochastic models, Theory of................... 10

Synthetic instruments............... 16

137
\Va
VAR, Value-at-Risk......................o. .. 9
Vasicek modelt 11
Wiener process, Random walk.................. 10

	octarisk Documentation
	Introduction
	Why quantifying market risk?
	Features
	Prerequisites

	User guide
	Risk management in practice
	What is the investment objective?
	Which purpose has risk management?
	Which risks to cover?
	Which risks not to cover?
	Where are the blind spots?
	How to calibrate the model?
	Further thoughts
	Roadmap and Example

	Introducing market risk
	Market risk measures
	Value-at-Risk
	Expected shortfall (ES)

	Scenario generation
	Random number generation
	Stochastic models
	Random walk and the Wiener process
	Ornstein-Uhlenbeck process
	Square-root diffusion process

	Financial models
	Geometric Brownian motion
	Brownian motion
	Vasicek model
	Cox-Ingersoll-Ross and Heston model

	Parameter estimation
	Monte-Carlo Simulation
	Stress testing

	Instrument valuation
	Sensitivity approach
	Linear dependency on risk factor shocks
	Approximation with sensitivity approach

	Full valuation approach
	Option pricing
	Swaption pricing
	Forward and Future pricing
	Cash flow instrument pricing
	Bond instrument pricing
	Cap and floor instrument pricing

	Synthetic instruments
	Stochastic instruments
	Retail instruments

	Aggregation
	Reporting
	Risk Report
	Solvency II regulatory reporting

	Graphical user interface

	Developer guide
	Implementation concept
	Process overview
	Class diagram

	Implementation workflow
	Overview

	Input files
	Risk factors
	Positions
	Instruments
	Stress tests
	Volatility surface
	Marketdata objects file
	Correlation matrix

	Output files

	Octave octarisk Classes
	Instrument.help
	Matrix.help
	Curve.help
	Forward.help
	Option.help
	Cash.help
	Debt.help
	Sensitivity.help
	Riskfactor.help
	Index.help
	Synthetic.help
	Surface.help
	Swaption.help
	Stochastic.help
	CapFloor.help
	Bond.help
	Position.help
	Retail.help

	Octave Functions and Scripts
	adapt_matlab
	addtodatefinancial
	aggregate_positions
	any2str
	betainc_vec
	betainv_vec
	calcConvexityAdjustment
	calc_HHI
	calibrate_evt_gpd
	calibrate_generic
	compile_oct_files
	convert_curve_rates
	correct_correlation_matrix
	discount_factor
	doc_instrument
	doc_riskfactor
	epanechnikov_weight
	estimate_parameter
	fmincon
	gammainc
	gammaincinv
	generate_willowtree
	getCapFloorRate
	getFlooredSpotByFlooringForwardCurve
	get_FX_rate
	get_basis
	get_basket_volatility
	get_bond_tf_rates
	get_cms_rate_hagan
	get_cms_rate_hull
	get_credit_rating
	get_dependencies
	get_documentation
	get_documentation_classes
	get_esg_rating
	get_forward_rate
	get_gpd_var
	get_informclass
	get_informscore
	get_marginal_distr_pearson
	get_quantile_estimator
	get_readinessclass
	get_readinessscore
	get_srri
	get_srri_level
	get_srri_simple
	get_sub_object
	get_sub_struct
	gini
	harrell_davis_weight
	ind2sub_tril
	instrument_valuation
	integrationtests
	interpolate_curve
	load_correlation_matrix
	load_instruments
	load_matrix_objects
	load_mktdata_objects
	load_parameter
	load_positions
	load_riskfactor_mapping
	load_riskfactor_scenarios
	load_riskfactor_stresses
	load_riskfactors
	load_stresstests
	load_volacubes
	load_yieldcurves
	octarisk
	octarisk_gui
	option_asian_levy
	option_asian_vorst90
	option_barrier
	option_binary
	option_bjsten
	option_bond_hw
	option_bs
	option_lookback
	option_willowtree
	perform_rf_stat_tests
	plot_AA_piecharts
	plot_HHI_piecharts
	plot_hist_var
	plot_hist_var_simple
	plot_sensitivities
	plot_solvencyratio
	pricing_forward
	pricing_npv
	print_class2dot
	profiler_analysis
	replacement_script
	return_checked_input
	rollout_retail_cashflows
	rollout_structured_cashflows
	save_objects
	scenario_generation_MC
	solvency2_reporting
	struct2obj
	swaption_bachelier
	swaption_black76
	swaption_underlyings
	test_io
	test_oct_files
	test_pos_aggregation
	testriskfree
	timefactor
	unittests
	unvech
	update_mktdata_objects
	betainc_lentz_vec
	calc_sobol_cpp
	calc_vola_basket_cpp
	calculate_npv_cpp
	gammainc_lentz_vec
	interpolate_cubestruct
	interpolate_curve_vectorized
	interpolate_curve_vectorized_mc
	interpolate_curvestruct
	interpolate_surfacestruct
	optimize_basket_forwardprice
	pricing_callable_bond_cpp
	pricing_option_cpp

	Index

